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Summary

Self interaction: Anything beyond the kinetic and mass terms. Example: Higgs.

® Main message: Self-interacting vector-fields are not physical in the strict sense

® Time evolution is possible, but not indefinitely: Problem is not detectable by “local”
methods.
® Related to the “conditions” on the vectors: Likely goes beyond vectors.

Coates and Ramazanoglu, PRL 2022; arXiv:2211.08027 [gr-qc]

Closely related: Clough et al, PRL 2022; Mou and Zhang, PRL 2022

Inspiration: Silva et al PRD 2022; Demirboga et al PRD 2022; Garcia-Saenz et al PRL 2021
Earlier work: Esposito-Fareése et al PRD 2010
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Massless scalars

~070+ 950 =0 (1)
¢ — e—iwteikx = w=4k — ¢ — eikxezl:ikt

Fourier modes oscillate in time.
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Massive scalars

—07 ¢+ 030 =m’¢ (2)
qb — e—iwteikx = w=-+ k2 + m2 — ¢ — ekae:ti\/k2+m2t

Fourier modes still oscillate in time.
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Massive scalars: alternative look

V()

070+ R0 = VI(9), V() = ym? (3)

ho=0 = ¢=-V'(9) (4)

1. 1
= 5(;52 + §m2¢2 = const  (5)

Particle moving under the potential V(o).
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Self-interacting scalars

~07¢+ 926 = V'(¢) (6)
1 2,2 1 2 /4
V(¢) = 5m*¢? + JAm?o (7)
A >0 — fine

A < 0 — potential trouble

V()

Figure: V(¢) = 3¢ &

¢4
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Changing the derivative terms — lll-posedness

+0%2p + 0% =0 (8)
b= o~ Wt gikx = w=4ik - ¢= eikxe\k|t

Arbitrarily fast blow up for k — oo!
There are modes that immediately go to infinity if we try time evolution.

$(0,x =0) , 9:4(0,x) = ce'*

ix .t .
= ¢(x,t) = €?e’c sinh- — no continuous dependence! (9)
€
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General case

A 026 +2B 0,06+ C 026 = g"V,V,6 = g = [A B]

B C (10)

Well-posed if eigenvalues are (—,+,...,+): Signature of the metric.
Lower derivative terms are not critical.
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Scalar field summary

g/wvuvuﬁb = V/(¢) (11)
¢ V/(¢) unbounded from below: Bad physics, math maybe OK.
® Metric signature not Lorentzian: ill posed, even math is in trouble.

® The highest derivative terms determine well-posedness, the metric has to be
Lorentzian. Good thing is that the metric is a given ... or is it?
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Massless vectors

S= —/d"x\/E F, F* (12)
Fu =V, X, =V, X, = 0, X, — 9, X, (13)
— 03402
——
="V, V, XP — VPV X' =V, FH° (14)

XH has gauge freedom! We can choose X* such that V/, X# = 0;® +V - A=0—
Lorenz gauge.

0=n"V,V, X* (15)
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Massive vectors

S = —/d”x g| [Fu F* 4+ 2m?X,X*"]

Fuv = VuXy — VX, = 0, X, — 0,X,
m2XP = 1V, V, X — V'V, X"

V, V. F'P = m?*V ,X°
= VX" =0 — Lorenz condition, not gauge!



Self-interacting vectors

S=- / d"x\/|gl [FuF™ +2m* X, X* + Am?(X, X*)?]
m*(1+ A\X?)X? =V, V,XP — VPV, X+

Vo VuF = m? V, [(1+AX?)X?]
= V,[(1+ )\X2)X”} =0 — No easy cancellation
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Self-interacting vectors: Principal part

m?(1 4+ AX?)X? = gV, V,XP — VPV X" (25)
... generalized Lorenz condition+-algebra ...
= 0= [(1+ X" +2AX!X"] V.V, XP + ... (26)
= 0=g"" oro"X* + ... (27)
_1 4 XX 2AX XX
2" = (1+2X?) LK LMK | governs the dynamics, not it
Eny I Dy e

Even if the spacetime is perfectly OK, g, (X*) can have the wrong signature!

13/24



Self-interacting vectors: Principal part

® Works the same way for a general curved spacetime 7, — gy

® However, curvature plays no essential role, intrinsic to the vector field theory, i.e.
even occurs for fixed g, = 1.

® More technical machinery is needed for higher than 1 4 1D, but the same result.
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Problematic g,

Singular metric when determinant vanishes

g=detz, =g (1+AX) 7 (14+3\X%) =g 29 3 =0 (28)
= X?=-)\/3 (29)
8w becomes singular at finite values of X"

confirmed by checking the divergence of curvature
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Dynamical loss of hyperbolicity

Start with Lorentzian g,,,,, does the problem occur?
Yes, for any value of m, A.

0.2 A1
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Dynamical loss of hyperbolicity

Start with Lorentzian g,,,,, does the problem occur?
Yes, for any value of m, A.
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On progress, future

Likely holds for anything beyond Proca.

Likely holds for other theories: p—form fields. New theoretical test!

Backreaction effects not known.

Similar problems in nonminimal couplings, tachyon on vector = ill-posedness.

Might be overlooked/resolved when the theory is effective.
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Effective field theories, fixing-the-equation

Abelian Higgs theory: define D,¢ = 0,0 — igA,¢.

1 1[ = A
L= FuF" =2 [(Duqb) (D¥) — m*|o|* + 2|¢|“] (30)
= VP = —qp?0"0 + P0PAY (¢ = pexp(iO)) (31)
2,2 22
v qa - m q X v 1
v O (1 X )x +O<m2> (32)

The first equation is fine, no loss of hyperbolicity.
Only known for A\ < 0, other UV completion options?
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The end

QUESTIONS?



Some wrong turns

Evolve the vector with 3 4+ 1 decomposition.

ds? = —a?dt? + ~;(dx’' + Bdt)(dx’ + F dt) (33)
Xp=mo+Au, ¢=—nmX", A= ("i+n"nj)X, .

i = B'Dip — ADjo — —7 (K — D;A)
2/\a
gnn

0=DE' + plzp=C,

[AADA; — ¢ (EA — KyATA + 2A'D;¢)] (34)

Bon = "0 g = —(1+3AX?) + 20AA" (35)



A numerical look at ill-posedness

+070+ 03¢ =0
b= e—iwteikx = w=4ik - ¢= eikxe\k|t

Arbitrarily fast blow up for k — oo!
There are modes that immediately go to infinity if we try time evolution.

$(0,x =0) , 9:4(0,x) = ce'*

ix .t .
= ¢(x,t) = €?e’c sinh- — no continuous dependence!
€

(37)
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A numerical look at ill-posedness
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A numerical look at ill-posedness
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