End of time in vector field theories

Fethi M Ramazanoğlu (with A Coates) Koç University

Star-UBB Seminar Series in Gravitation

December 8, 2022

Summary

- Self interaction: Anything beyond the kinetic and mass terms. Example: Higgs.
- Main message: Self-interacting vector-fields are not physical in the strict sense
- Time evolution is possible, but not indefinitely: Problem is not detectable by "local" methods.
- Related to the "conditions" on the vectors: Likely goes beyond vectors.

Coates and Ramazanoglu, PRL 2022; arXiv:2211.08027 [gr-qc]

Closely related: Clough et al, PRL 2022; Mou and Zhang, PRL 2022

Inspiration: Silva et al PRD 2022; Demirboga et al PRD 2022; Garcia-Saenz et al PRL 2021

Earlier work: Esposito-Fareése et al PRD 2010

Massless scalars

$$-\partial_t^2 \phi + \partial_x^2 \phi = 0 \tag{1}$$

$$\phi = e^{-i\omega t}e^{ikx} \Rightarrow \omega = \pm k \rightarrow \phi = e^{ikx}e^{\pm ikt}$$

.

Fourier modes oscillate in time.

Massive scalars

$$-\partial_t^2 \phi + \partial_x^2 \phi = m^2 \phi \tag{2}$$

$$\phi = e^{-i\omega t}e^{ikx} \Rightarrow \omega = \pm \sqrt{k^2 + m^2} \rightarrow \phi = e^{ikx}e^{\pm i\sqrt{k^2 + m^2}t}$$

.

Fourier modes still oscillate in time.

Massive scalars: alternative look

$$-\partial_t^2\phi + \partial_x^2\phi = V'(\phi)$$
, $V(\phi) = \frac{1}{2}m\phi^2$ (3)

$$\partial_x \phi = 0 \Rightarrow \ddot{\phi} = -V'(\phi)$$
 (4)
 $\Rightarrow \frac{1}{2}\dot{\phi}^2 + \frac{1}{2}m^2\phi^2 = const$ (5)

Particle moving under the potential $V(\phi)$.

Self-interacting scalars

$$-\partial_t^2 \phi + \partial_x^2 \phi = V'(\phi) \tag{6}$$

$$V(\phi) = \frac{1}{2}m^2\phi^2 + \frac{1}{4}\lambda m^2\phi^4$$

$$\lambda > 0 \to \text{fine}$$
(7)

 $\lambda < 0 \rightarrow \text{potential trouble}$

Figure: $V(\phi) = \frac{1}{2}\phi^2 \pm \frac{1}{4}\phi^4$

Changing the derivative terms – III-posedness

$$+\partial_t^2 \phi + \partial_x^2 \phi = 0 \tag{8}$$

$$\phi = e^{-i\omega t}e^{ikx} \Rightarrow \omega = \pm ik \rightarrow \phi = e^{ikx}e^{|k|t}$$

.

Arbitrarily fast blow up for $k \to \infty$!

There are modes that *immediately* go to infinity if we try time evolution.

$$\phi(0, x = 0) , \ \partial_t \phi(0, x) = \epsilon e^{i\frac{x}{\epsilon}}$$

$$\Rightarrow \phi(x, t) = \epsilon^2 e^{i\frac{x}{\epsilon}} \sinh \frac{t}{\epsilon} \to \text{ no continuous dependence!}$$
(9)

General case

$$A \partial_t^2 \phi + 2B \partial_t \partial_x \phi + C \partial_x^2 \phi = g^{\mu\nu} \nabla_\mu \nabla_\nu \phi \Rightarrow g^{\mu\nu} = \begin{bmatrix} A & B \\ B & C \end{bmatrix}$$
 (10)

Well-posed if eigenvalues are (-, +, ..., +): **Signature of the metric.** Lower derivative terms are not critical.

Scalar field summary

$$g^{\mu\nu}\nabla_{\mu}\nabla_{\nu}\phi = V'(\phi) \tag{11}$$

- $V(\phi)$ unbounded from below: Bad physics, math *maybe* OK.
- Metric signature not Lorentzian: ill posed, even math is in trouble.
- The highest derivative terms determine well-posedness, the metric has to be Lorentzian. Good thing is that the metric is a given ... or is it?

Massless vectors

$$S = -\int d^n x \sqrt{|g|} F_{\mu\nu} F^{\mu\nu} \tag{12}$$

$$F_{\mu\nu} = \nabla_{\mu} X_{\nu} - \nabla_{\nu} X_{\mu} = \partial_{\mu} X_{\nu} - \partial_{\nu} X_{\mu} \tag{13}$$

$$0 = \overbrace{\eta^{\mu\nu}\nabla_{\mu}\nabla_{\nu}}^{-\partial_t^2 + \partial_x^2} X^{\rho} - \nabla^{\rho}\nabla_{\mu}X^{\mu} = \nabla_{\mu}F^{\mu\rho}$$
(14)

 X^{μ} has gauge freedom! We can *choose* X^{μ} such that $\nabla_{\mu}X^{\mu}=\partial_{t}\Phi+\nabla\cdot\vec{A}=0$ \to Lorenz gauge.

$$0 = \eta^{\mu\nu} \nabla_{\mu} \nabla_{\nu} X^{\rho} \tag{15}$$

Massive vectors

$$S = -\int d^{n}x \sqrt{|g|} \left[F_{\mu\nu}F^{\mu\nu} + 2m^{2}X_{\mu}X^{\mu} \right]$$
 (16)

$$F_{\mu\nu} = \nabla_{\mu} X_{\nu} - \nabla_{\nu} X_{\mu} = \partial_{\mu} X_{\nu} - \partial_{\nu} X_{\mu} \tag{17}$$

$$m^2 X^{\rho} = \eta^{\mu\nu} \nabla_{\mu} \nabla_{\nu} X^{\rho} - \nabla^{\nu} \nabla_{\mu} X^{\mu} \tag{18}$$

$$\nabla_{\rho}\nabla_{\mu}F^{\mu\rho} = m^{2}\nabla_{\rho}X^{\rho} \tag{19}$$

$$\Rightarrow \nabla_{\mu}X^{\mu} = 0 \rightarrow \text{Lorenz condition, not gauge!}$$
 (20)

Self-interacting vectors

$$S = -\int d^{n}x \sqrt{|g|} \left[F_{\mu\nu}F^{\mu\nu} + 2m^{2}X_{\mu}X^{\mu} + \lambda m^{2}(X_{\mu}X^{\mu})^{2} \right]$$
 (21)

$$m^{2}(1+\lambda X^{2})X^{\rho} = \eta^{\mu\nu}\nabla_{\mu}\nabla_{\nu}X^{\rho} - \nabla^{\rho}\nabla_{\mu}X^{\mu}$$
 (22)

$$\nabla_{\rho}\nabla_{\mu}F^{\mu\rho} = m^2 \nabla_{\rho} \left[(1 + \lambda X^2)X^{\rho} \right]$$
 (23)

$$\Rightarrow \nabla_{\rho} \left[(1 + \lambda X^2) X^{\rho} \right] = 0 \rightarrow \text{ No easy cancellation}$$

(24)

Self-interacting vectors: Principal part

$$m^{2}(1+\lambda X^{2})X^{\rho} = \eta^{\mu\nu}\nabla_{\mu}\nabla_{\nu}X^{\rho} - \nabla^{\rho}\nabla_{\mu}X^{\mu}$$
(25)

... generalized Lorenz condition+algebra ...

$$\Rightarrow 0 = \left[(1 + \lambda X^2) \eta^{\mu\nu} + 2\lambda X^{\mu} X^{\nu} \right] \nabla_{\mu} \nabla_{\nu} X^{\rho} + \dots \tag{26}$$

$$\Rightarrow 0 = \overline{\mathbf{g}}^{\mu\nu} \ \partial^{\mu}\partial^{\nu}X^{\alpha} + \dots \tag{27}$$

$$ar{g}^{\mu
u} = (1 + \lambda X^2) egin{bmatrix} -1 + rac{2\lambda X^t X^t}{1 + \lambda X^2} & rac{2\lambda X^t X^x}{1 + \lambda X^2} \ rac{2\lambda X^t X^x}{1 + \lambda X^2} & 1 + rac{2\lambda X^x X^x}{1 + \lambda X^2} \end{bmatrix}$$
 governs the dynamics, not $\eta^{\mu
u}$!

Even if the spacetime is perfectly OK, $\bar{g}_{\mu\nu}(X^{\bar{\mu}})$ can have the wrong signature!

Self-interacting vectors: Principal part

- Works the same way for a general curved spacetime $\eta_{\mu\nu} \to g_{\mu\nu}$.
- However, curvature plays no essential role, *intrinsic* to the vector field theory, i.e. even occurs for fixed $g_{\mu\nu}=\eta_{\mu\nu}$.
- More technical machinery is needed for higher than 1 + 1D, but the same result.

Problematic $\bar{g}_{\mu\nu}$

Singular metric when determinant vanishes

$$\bar{g} = \det \bar{g}_{\mu\nu} = g \left(1 + \lambda X^2\right)^d \left(1 + 3\lambda X^2\right) = g z^d z_3 = 0$$

$$\Rightarrow X^2 = -\lambda/3$$

$$\bar{g}_{\mu\nu} \text{ becomes singular at finite values of } X^{\mu}$$

$$\text{confirmed by checking the divergence of curvature}$$
(28)

Dynamical loss of hyperbolicity

Start with Lorentzian $\bar{g}_{\mu\nu}$, does the problem occur? Yes, for any value of m, λ .

Dynamical loss of hyperbolicity

Start with Lorentzian $\bar{g}_{\mu\nu}$, does the problem occur? Yes, for any value of m, λ .

On progress, future

- Likely holds for anything beyond Proca.
- Likely holds for other theories: *p*-form fields. **New theoretical test!**
- Backreaction effects not known.
- Similar problems in nonminimal couplings, tachyon on vector ⇒ ill-posedness.
- Might be overlooked/resolved when the theory is *effective*.

Effective field theories, fixing-the-equation

Abelian Higgs theory: define $D_{\mu}\phi = \partial_{\mu}\phi - iqA_{\mu}\phi$.

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} \left[\left(\overline{D_{\mu} \phi} \right) (D^{\mu} \phi) - m^2 |\phi|^2 + \frac{\Lambda}{2} |\phi|^4 \right]$$
 (30)

$$\Rightarrow \nabla_{\mu} F^{\mu\nu} = -q \rho^2 \partial^{\nu} \Theta + q^2 \rho^2 A^{\nu} \quad , \quad (\phi = \rho \exp(i\Theta))$$
 (31)

$$\Rightarrow \nabla_{\mu} F^{\mu\nu} = \frac{q^2 m^2}{\Lambda} \left(1 - \frac{q^2 X^2}{m^2} \right) X^{\nu} + \mathcal{O}\left(\frac{1}{m^2}\right) \tag{32}$$

The first equation is fine, no loss of hyperbolicity. Only known for $\lambda < 0$, other UV completion options?

The end

QUESTIONS?

Some wrong turns

Evolve the vector with 3 + 1 decomposition.

$$ds^{2} = -\alpha^{2}dt^{2} + \gamma_{ij}(dx^{i} + \beta^{i}dt)(dx^{j} + \beta^{j}dt)$$

$$X_{\mu} = n_{\mu}\phi + A_{\mu} , \quad \phi = -n_{\mu}X^{\mu} , \quad A_{i} = (\delta^{\mu}{}_{i} + n^{\mu}n_{i})X_{\mu} .$$

$$\partial_{t}\phi = \beta^{i}D_{i}\phi - A^{i}D_{i}\alpha - \frac{\alpha}{\overline{g}_{nn}}z\left(K\phi - D_{i}A^{i}\right)$$

$$+ \frac{2\lambda\alpha}{\overline{g}_{nn}}\left[A^{i}A^{j}D_{i}A_{j} - \phi\left(E_{i}A^{i} - K_{ij}A^{i}A^{j} + 2A^{i}D_{i}\phi\right)\right]$$

$$0 = D_{i}E^{i} + \mu^{2}z\phi = C ,$$
(33)

 $\bar{g}_{nn} = n^{\mu} n^{\nu} \bar{g}_{\mu\nu} = -(1 + 3\lambda X^2) + 2\lambda A_i A^i$.

21/24

(35)

A numerical look at ill-posedness

$$+\partial_t^2 \phi + \partial_x^2 \phi = 0 \tag{36}$$

$$\phi = e^{-i\omega t}e^{ikx} \Rightarrow \omega = \pm ik \rightarrow \phi = e^{ikx}e^{|k|t}$$

.

Arbitrarily fast blow up for $k \to \infty$!

There are modes that *immediately* go to infinity if we try time evolution.

$$\phi(0, x = 0) , \ \partial_t \phi(0, x) = \epsilon e^{i\frac{x}{\epsilon}}$$

$$\Rightarrow \phi(x, t) = \epsilon^2 e^{i\frac{x}{\epsilon}} \text{ sinh } \frac{t}{\epsilon} \to \text{ no continuous dependence!}$$
(37)

A numerical look at ill-posedness

A numerical look at ill-posedness

