

Cosmological QUOKKAS

Jeffrey A. Hodgson

Benjamin l'Huillier, Yannis Liodakis, Sang-Sung Lee and Arman Shafieloo Assistant Professor at Sejong University, Seoul, South Korea

National Research Foundation of Korea

Measuring distances

Sounds boring, but actually very interesting **Distances are one of the most difficult things to get in astronomy**

Redshift

 $\bullet \bullet \bullet$

What is it?

Redshift

$\bullet \bullet \bullet$

The same as that, except with light. Moving **towards** you = more blue Moving **away** = more **red** What does this have to do with distance??!

The ladder

Each rung of the ladder builds on the previous rung

The size of the Earth

Even the ancient Greeks knew it accurately

The size of the Earth: How did the Greeks do it?

- They knew the Earth was spherical.
 - They saw that ships would go "down" over the horizon
 - The boundary of the Earth's shadow during a lunar eclipse was always circular (a disk would make elliptical shadows) - Aristotle
- Eratosthenes (~200 BCE) used the difference in shadows and the distance between two locations to determine the size of the Earth
 - $\circ~~$ 6800 km compared with 6377 km !
 - \circ Didn't even know Pi back then!

Distance to the Moon

Knowing the size of the Earth allows us to measure the distance to the Moon!

Distance to the Moon - Aristarchus

- Lunar eclipses due to shadow of the Earth on the moon (roughly an Earth diameter in size)
- Lunar eclipses takes 3 hours
- Moon takes 28 days to orbit the Earth
- Worked out that the moon must be about 60 Earth radii away
- 60 x 6800 = 408 000 km
 - \circ 384 000 km is the real value
 - Accurate to 6% 2000+ years ago!

Distance to the Sun

Probably the most important measurement in all of astronomy So important that we call it *The Astronomical Unit*

Distance to the Sun

- Aristarchus also estimated a distance to the Sun
- Measure the angle between the Sun and the Moon at 1st and last quarters
- Because we know the distance to the Moon, could solve for the distance to the Sun
- Inadequate data meant he thought ~20 times Earth-Moon distance (400x is closer)
- Heliocentric model of the solar system 1700 years before Copernicus!

Distance to the Sun

- Estimates were greatly improved in the 17th century by Copernicus, and then Brahe and Kepler
- Kepler got the distance to Mars (very cleverly!) and then used it to get the distances to all of the planets and Sun
- These days we use radar and Kepler's laws to get the distance extremely accurately
 - Bounce radio waves off Venus (and other planets) to get the distance to it
 - Use Kepler's laws to solve for the distances

1 AU: 149 597 870.7 km

Parallax

Starting to measure distance to objects outside of our solar system

Parallax

- Very simple, basically the same concept as how our eyes do depth perception
- Observing a nearby star (compared to distant stars) at 6 month intervals will appear to shift position
- Measuring that shift and combining with the Astronomical Unit gives the distance!
- That the Ancient Greeks *didn't* see parallax was interpreted as the stars being impossibly far away, thus leading to Earth centered solar system models!

Standard Candles

Standard Candles

- At some point, we can't resolve the the motion of the stars
- If we know how bright something actually and we measure how bright it *appears* to be, we can find out how far away it is: **Standard candles**
- Similarly, if we know how big something is, we can determine how far away it is by measuring how big it appears to be: Standard rulers

Cepheid variables

What made Hubble famous

Cepheid Variables

- Very bright stars that pulsate in a predictable way
- We measured their distance with parallax!
- Hubble measured the distance to them
- They found that galaxies further away appeared to be redder than they should be: redshift
- Had discovered that the universe was getting bigger!

Supernovae

And Dark Energy

Supernovae

- Supernovae are amongst the brightest objects in the universe
- Special kind of supernova (Type 1a) explode in a unique way
 - "Standard explosion?"
 - Relationship calibrated on galaxies where distances via Cepheids has been measured
- Distant Supernovae are fainter than they should be!
 - Universe is not only expanding, but getting bigger even faster!
- "Dark Energy" We don't know what it is

The Future!

- Even larger distances (using quasars etc)
- The Hubble constant is still a source of controversy!
- While we know the universe is accelerating in its expansion, we have no idea why or what causes it!
- But we know all of this, effectively, because we know the distance between the Earth and the Sun

Cosmological QUOKKAS

"Single-rung" distance measure (or maybe 1.5 rung)

Low redshift to high redshift (z>5)

Even if our results are noisier (initially), we should be sensitive to changes from the distance-redshift relationship at high-z

Need cross-checks for Supernovae/BAOs

Method has its systematics, but different kind of systematics to Distance Ladder etc.

Open questions..

- Hubble Constant tension (low-z)
- We don't know what ~95% of the Universe is
- What is the nature of Dark Energy?
- Was there **really** so little Dark Energy in the early universe?

Any variations from the concordance cosmology would be expected to be seen at high-z

The universe today

Open questions..

- Hubble Constant tension (low-z)
- We don't know what ~95% of the Universe is
- What is the nature of Dark Ene MEASURE
- Was there **really** so little Dark Energy in the early universe?

The universe today Normal 5.0% Dark Matter 25.0% Dark Energy 70.0% **DISTANCES!!** 5? (vs redshift) Dark Energy 1.0%

Any variations from the concordance cosmology would be expected to be seen at high-z

Dark Matter

Current cutting-edge

• Type Ia Supernovae (SN Ia)

- Very bright "standard explosion"
- Dark Energy discovery (Nobel 2011)
- Distances up to z~2

• Baryonic Acoustic Oscillations

- Imprint of early universe physics on large scale galaxy distribution
- Distances up to $z\sim 2.5$

• Cosmic Microwave Background

- Fit cosmological model parameters to the observed CMB power spectrum
- Model dependent

• Does the distance-z trend continue as expected past z~2?

Active Galactic Nuclei as standard candles

- AGN are supermassive black-holes (SMBH) at the center of massive galaxies producing jets that move at near the speed of light
- When jet is pointing at us: quasars and blazars
- Most continuously bright objects in the Universe
- Long desired as a standard candle

Need better methods

M87 jet, Image: NASA

Active Galactic Nuclei as standard candles

- AGN are supermassive black-holes (SMBH) at the center of massive galaxies producing jets that move at near the speed of light
- When jet is pointing at us: quasars and blazars
- Most continuously bright objects in the Universe
- Long desired as a standard candle
 - Reverberation mapping
 - Accurate, but difficult and need BH mass
 - Size scales (Gurvits+ 1995)
 - Complicated, has other dependencies
 - Parsec scale structures
 - Not possible (Wilkinson+ 1998)
- Many have proposed, none succeeded
- Need better methods

M87 jet, Image: NASA

Active Galactic Nuclei as standard candles

Cosmological models	Cosmological parameters	Cosmological parameters (sys)
Flat cosmological constant	$\Omega_m = 0.322^{+0.244}_{-0.141}, H_0 = 67.6^{+7.8}_{-7.4} km/s/Mpc$	$\Omega_m = 0.312^{+0.295}_{-0.154}, H_0 = 67.0^{+11.2}_{-8.6} \ km/s/Mpc$
Constant w	$\Omega_m = 0.309^{+0.215}_{-0.151}, \ w = -0.97^{+0.50}_{-1.73}$	$\Omega_m = 0.295^{+0.213}_{-0.157}, w = -1.13^{+0.63}_{-2.12}$
Ricci dark energy	$\Omega_m = 0.229^{+0.184}_{-0.184}, \ \beta = 0.550^{+0.265}_{-0.265}$	$\Omega_m = 0.240^{+0.210}_{-0.210}, \ \beta = 0.520^{+0.365}_{-0.275}$
Dvali-Gabadadze-Porrati	$\Omega_m = 0.285^{+0.255}_{-0.155}, H_0 = 66.2^{+7.4}_{-8.2} km/s/Mpc$	$\Omega_m = 0.248^{+0.335}_{-0.130}, H_0 = 64.3^{+11.8}_{-7.6} km/s/Mpc$

Fig. 4. Hubble Diagram of *Pantheon* supernovae (orange points, Scolnic et al. 2018), quasars at redshifts z = 0.7-1.3 (blue points), and quasars at redshifts z = 3.0-3.3 (red point). The luminosity distances for quasars are calculated using the parameters γ and β as described in the text, i.e. assuming that these parameters do not change with redshift, and adopting the best-fit flat ACDM model for supernovae. Each quasar point represents the average for all the quasars in the corresponding redshift interval.

gram of supernovae from the JLA survey² (cyan points) and quasars (yellow present the mean (and uncertainties on the mean) of the distance modulus in r quasars only. These averages are shown just for visualization and, as such, he statistical analysis. The new sample of z>3 quasars with dedicated XMM-is shown with blue stars. The inset is a zoom of quasar and supernovae on redshift range. The dashed magenta line shows a flat Λ CDM model with the z<1.4 data and extrapolated to higher redshifts. The black solid line is the third order expansion of log(1+z).

Fig. 8.— Cosmological constraints on the flat Λ CDM model from the flat Λ CDM model from the average for all the interval. (left panel) and with systematical uncertainties (right panel). Fitt measurements (black dashed lines) and Planck observations (green dot represents the best-fit flat Λ CDM model from the average for all the interval.

Risaliti et. al. 2018, Sacchi+ 2022

Introducing Cosmological QUOKKAS

• Stands for:

• Cosmological Quasar Observations on the KVN from Korea to Australia (and Spain)

- Project that aims to measure distances to the active nuclei of quasars and blazars
- How do we do it?
- Use the variability of AGN to our advantage

How are we doing it?

Key assumption:

The variability seen in AGN at radio wavelengths is reasonably constrained by the speed of light.

QUOKKA _ A project to measure Dark Energy

"Single-rung" method - no need for the distance ladder!

Biggest issue is with Doppler factors (i.e. weird relativistic effects)

 $Distance = \frac{Time \text{ for light to cross the source } \times c}{Apparent angular size (measured with VLBI)}$

How are we doing it? Causality limited "variability size" $D_{var} \sim c\Delta t$ gives a *linear* size (measured in km) Compare against the angular size (measured in mas) directly measured by VLBI Θ_{VLBI}

Distance can be found when the Doppler factor is known!

Looked at decades ago by Wiik+ 2001... but never kept up

Distance to 3C 84

- Hodgson+ 2020
- z=0.0178
- Often compared with M87
- 3C84: Doppler ~1 is justified
- Big flare with clearly resolved components
- LCDM DL (H0=70,Om=0.3)
 = 78 Mpc
- SN Ia 64 +/- 6 Mpc (Lennarz et. al. 2012)

A flare in 3C 84

A flare in 3C 84

Flare LC

Flare LC

Blazars - what we see at high-z

- Blazars often exhibit relativistic effects
 - \circ ~ Superluminal motions, time dilation etc
- Need to get the Doppler factor a function of the viewing angle to the source and the Lorentz factor
- In blazars, we cannot ignore the Doppler factor, but is notoriously difficult to get

- Need to get the Doppler factor in a non-cosmologically dependent way
- Equipartition Doppler factor, jet-speeds Doppler factor, inverse Compton
- It's hard to get the Doppler factor... But if we can show that our Doppler factor estimates don't evolve with z, we can measure Om
- Or.... find ways to measure the distance that doesn't depend on the Doppler factor

Source based or z-dependent systematics

- Two main model parameters we are trying to measure:
 - H0 and Omega_m
- H0 sensitive to source-based systematics and z-based systematics
 - C*t_var assumption etc
- Om sensitive to *redshift* dependent systematics
 - Source based systematics will only add scatter

Not supposed to show equations... (Hodgson+ 2023)

$$T_{\rm B,VLBI} = \frac{T_{\rm B,int}\delta}{(1+z)} \qquad D_{\rm A} = \frac{c\Delta t\delta}{\theta_{\rm VLBI}(1+z)}$$

$$T_{\rm B,var} = \frac{\delta^3 T_{\rm B,int}}{(1+z)^3} \qquad D_{\rm A} = \frac{2\ln 2c^3 S\Delta t}{\pi k_{\rm B} T_{\rm B,int} \nu^2 \theta_{\rm VLBI}^3}.$$

$$3C 84 \rightarrow \underbrace{\frac{Hubble Constant}{57.40 \pm 0.50} \frac{1.07^{0.13}}{0.99^{0.13}_{1.2}} \frac{4.06^{1.07}_{1.2}}{4.44^{1.20}_{1.20}}}_{3C 84 \rightarrow 0}$$

Can we use these to solve for our systematic errors?

Does TBint evolve with redshift (using BU data)?

TBint is degenerate with H0 (and source based systematics) \rightarrow TBint/H0/Systematics left as a free parameter and fit for Om.

How well do we need to know TBint? (Hodgson+ 2023)

Does the distribution of sources by redshift affect our measurements? Yes, a bit. (assuming 25% uncertainty on TBint) What if we have a 100% uncertainty but a billion dollars?

Can achieve ~4% errors!

OBJ

COSMOLOGICAL QUOKKAS Quasar observations using the KVN from Korea to Australia and Spain

- We require high cadence and high resolution!
- A Quokka is a small marsupial on an island off Perth
- Between KVN and Mopra (and potentially Yebes and even Italy)
- ~8000 km baseline, observations every 2-3 weeks
- Initial sample of ~20 sources (need a detection survey first)
- Extremely high resolution (~50 uas at 3mm)
- Unique NS baseline
- Mark6 and OCTAD backend ordered, test observations have been conducted at 22/43/86 GHz success!
- Full observations starting this year...
- Tried to detect M87 and Cen A at 3mm...

~8000 km

Mopra MEGA project

- Will observe an initial sample of ~10-20 sources 0 < z < 3 weekly
- Follow-up imaging observations using the East-Asian VLBI Network
- Limited to declination +/- 30
- Initial detection work (and ironing out practical difficulties off piping data from Australia to Korea....) this semester
- Observing program to begin very soon!
- Much practical work to be done (pipelining etc etc)

 $\Delta \alpha_{2000}$ [mas]

KVN-Australia..

Very limited uv coverage

SE Asia is perfect for filling in the uv-coverage gap for North-South observations

Malaysia would make an excellent addition to the imaging capabilities in the NS direction...

On the equator...

 $\Delta \alpha_{2000}$ [mas]

m: 0.05x1.27 mas @ 72.

Tests ongoing to evaluate performance of the array (KVN+Mopra)

: preliminary images at 22 GHz (from t22sl01b)

Courtesy of Whee-Yeon Cheong (KASI)

CLEAN beam of 5.67 mas x 0.20 mas @ of 74.5 deg

Super-resolved w/ circular beam of 0.2 mas

Observational strategy

- ~40-50 sources 0 < z < 5
- Weekly observations on KVN-Australia
- Monthly observations with South Africa and Spain + imaging with VLBA (USA)

- But including Malaysia...
- Huge improvement!

But maybe including Hart...

Initial detection survey of ~70 sources (0 < z < 4)

16 sources with (at least a little) common visibility with KVN and Mopra

20 sources KVN+Hart only

Let's see how many are detected...

UV Coverage for t22jh01b

Conclusions

- Demonstrated a new method for measuring distances to AGN
- Starting the Cosmological QUOKKA project to do this "properly" and hopefully sort out the systematics
- We can use a single method from low-z to z>6.
- Potentially thousands of sources
- Can continuously monitor sources -> averaging down our statistical errors.
- Not perfect but important
- We believe that with a properly designed experiment, we can be competitive or better than other methods!