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Introduction

• Bronstein cube

• NRG = non-relativistic
gravity ⊃ Newtonian gravity

• 1/c expansion ⊃ post-
Newtonian expansion

• NRQG = non-relativistic
quantum gravity

• NRQG is a bit of a misnomer. There is no dynamical gravity
to quantise. Think of quantum matter (described by
quantum mechanics) backreacting with a background that
reacts instantaneously.
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Introduction

• Is there a well-defined non-relativistic limit of quantum
gravity/string theory?

• In string theory there
exist dualities between
QG and specific QFTs
(holography, AdS/CFT,
...).

• Do such dualities exist
in the NR domain, i.e.
can NR strings be dual
to some NR field theory?

• Limits of AdS/CFT called Spin Matrix Theory give rise to NR
strings dual to quantum mechanical limits of AdS/CFT. See
e.g. [Harmark, Kristjansson, Orselli, 2007/8], [Harmark, JH, Obers, 2017].
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Introduction: NR geometry

• Many of the recent developments in NR gravity, and NR
string theory rely on an improved understanding of NR
geometry.

• The most common example of a NR geometry is
Newton–Cartan geometry which is the arena of every day
life.

• Many other NR geometries have been found: type II
Newton–Cartan, string Newton–Cartan, Aristotelian,
Carrollian geometries ...

• Outside of GR and string theory, NR geometry has found
applications in fluid dynamics, condensed matter physics,
Hořava–Lifshitz gravity, 2D/3D gravity, ...
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Introduction: NR approximations of GR

• ‘Drawbacks’ of Post-Newtonian approximation methods
(Blanchet–Damour and Will–Wiseman approaches):

◦ harmonic gauge

◦ strong no-incoming radiation boundary condition

◦ compactly supported matter

• An approach to address the first two issue is currently WIP
[JH, Musaeus].

• We do not have a universal method to define non-relativistic
approximations of GR coupled to any matter system
(compact or non-compact) in a any gauge.

• The PN approximation is a weak field approximation. There
is however also strong non-relativistic gravity. Can this be
useful?
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Introduction: PN corrections to quantum mechanics

• A very special case of NRQG is to take G→ 0 and study
QM on a fixed background.

• Is there a coupling prescription for this?

• Suppose we know the 1/c corrections from SR how do we

couple the system to geometries that are obtained from 1/c
expansions of solutions of GR?

• What is the dynamics of a hydrogen atom in a Kerr
background to some order in 1/c?
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Outline

• Newton–Cartan geometry

• 1/c expansion of GR

• QM on NR geometries
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Newton–Cartan Geometry

metric : τ(a, b) = |t′ − t| =

∫ b

a

τ , ρ(a, b) = ‖~y − ~x‖ =

∫ b

a

ds

• Here τ = dt and ds2
∣

∣

t=cst
= δijdx

idxj

• Write τ = τµdx
µ with coordinates xµ = (t, xi). Remove the

restriction to t = cst in ds2 and write ds2 = hµνdx
µdxν as a

quadratic form with signature (0, 1, . . . , 1).

• Under a Galilean boost with parameter λµ = (0, ~v)

hµν → hµν + λµτν + λντµ + λ2τµτν

• A manifold’s tangent space is the flat version of the manifold.
In general τµ, hµν and the parameter λµ are tensor fields.

τ = dt absolute time

τ = Ndt absolute foliation
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Newton–Cartan Geometry

• Mass is like electric charge ⇒ gauge connection mµ

• Fields on curved NC geometry

δS[τµ, hµν ,mµ] =

∫

d4xe

[

Eµδτµ +
1

2
T µνδhµν + Jµδmµ

]

Eµ energy current

T µν momentum-stress tensor

Jµ mass current

• momentum = mass flux: T 0i = J i ⇔ δmµ = λµ and

δhµν = λµτν + λντµ

• mass conservation: ∂µ(eJ
µ) = 0 ⇔ δmµ = ∂µσ

• Triplet (τµ, hµν ,mµ) with λµ, σ gauge redundancy defines a

NC geometry.
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Newton–Cartan Geometry

• Geodesic in NC geometry: Newton’s equation

S = m

∫

dλ

(

hµν ẋ
µẋν

2τρẋρ
−mµẋ

µ

)

• The time component of mµ is Newton’s potential.

• The fact that the mass is only an overall coupling is a
manifestation of the equivalence principle.

• Schrödinger wavefunction on NC geometry

S =

∫

d4xe (imψ∗vµDµψ − imψvµDµψ
∗ − hµνDµψDνψ

∗)

vµ, hµν inverses of τµ and hµν .

• U(1) symmetry is gauged by mµ: Dµψ = ∂µψ + immµψ.

• Mass conservation = conservation of probability.
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1/c expansion of GR

Review article: [JH, Obers, Oling, 2022]

• A convenient way to make the c-dependence of GR manifest

is to write gµν = −c2TµTν +Πµν and gµν = − 1
c2
TµT ν +Πµν .

• Signature of Πµν is (0, 1, . . . , 1).

• Light cones in tangent space have slope 1/c:

Ea
µ (spatial vielbeins labelled by a)

Tµ

1/c
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1/c expansion of GR

• So far we just reformulated GR in different variables. We will
now assume that we can Taylor expand Tµ and Πµν in 1/c:

Tµ = τµ+
1

c2
mµ+

1

c4
Bµ+O(c−6) , Πµν = hµν+

1

c2
Φµν+O(c−4)

• This is what leads to the covariant 1/c expansion.

• Note here only even powers. For odd powers see [Ergen,

Hamamci, Van den Bleeken, 2020] and later in the PN expansion.

• This leads to the metric expansion:

gµν = −c2τµτν+hµν−2τ(µmν)+c
−2

(

Φµν −mµmν − 2τ(µBν)

)

+O(c−4)

• The 1/c expansion of the metric was pioneered by [Dautcourt,

1990/97] and generalised in [Van den Bleeken, 2017], [JH, Hansen,

Obers, 2018-20].
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1/c expansion of GR

• We can view the 1/c expansion as an expansion around a
geometry described by τµ and hµν where all the higher order

fields mµ and Φµν are like gauge connections.

• Expanding the generator of infinitesimal diffeos:

Ξµ = ξµ + 1
c2
ζµ +O(c−4) leads to gauge transformations for the

subleading fields mµ and Φµν w.r.t. subleading diffeos ζµ.

• Local Lorentz transformations acting on Tµ and Πµν also get

expanded and lead to local Galilean transformations.

• Expanding the Einstein equations coupled to a point particle
leads to Newtonian gravity:

R̄µν = 8πG
d− 2

d− 1
ρτµτν , dτ = 0

where we used the leading order Levi-Civita connection Γ̄ρ
µν .
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1/c expansion of GR: Examples of weak limits

ds2Schwarzschild = −c2
(

1−
2Gm

c2r

)

dt2 +

(

1−
2Gm

c2r

)−1

dr2 + r2dΩ2
S2

ds2AdS(+)/dS(-) = −c2
(

1±
r2

l2

)

dt2 +
dr2

1± r2

l2

+ r2dΩ2
S2

• Consider m independent of c.

τµdx
µ = dt , hµνdx

µdxν = dr2 + r2dΩ2
S2 , mµdx

µ = −
Gm

r
dt

Point mass in flat spacetime with Newtonian pot. Φ = −Gm
r

.

• Take l = c/H with the Hubble constant H independent of c.

τµdx
µ = dt , hµνdx

µdxν = dr2 + r2dΩ2
S2 , mµdx

µ = ±
1

2
H2r2dt
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1/c expansion of GR: Example of a strong limit

• Strong limit: m = c2M ; M independent of c2 [Van den Bleeken, 2017].

τµdx
µ =

√

1−
2GM

r
dt , hµνdx

µdxν =

(

1−
2GM

r

)−1

dr2+r2dΩS2

mµdx
µ = 0 = Φµνdx

µdxν

• This strong gravity expansion of the Schwarzschild metric is
not captured by Newtonian gravity, but is still described as a
Newton–Cartan geometry.

• This provides us with a different approximation of GR as
compared to the post-Newtonian expansion.

• τ is no longer exact but τ ∧ dτ = 0 (hypersurface orthogonality).
Strong limit captures gravitational time dilation: clocks tick
slower/faster depending on position on a constant time slice.
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QM on NR geometries

[JH, Have, Obers, Pikovski, to appear]

• Goal: given the Schrödinger equation for a quantum system in

flat space time, including 1/c2 corrections, find a coupling

prescription to couple this to 1/c2 expanded geometries.

• A top-down approach for the Schwarzschild metric was used in
[Lämmerzahl, 1995] and generalised in [Schwartz, Giulini, 2018].

• Here the focus is on coupling prescriptions (i.e. general
backgrounds and systematising results).

• We ignore backreaction: classically this leads to the Schrödinger–
Newton equation which violates the superposition principle.
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QM on NR geometries: The main idea

• KG equation and inner product on solution space:

−
1

c2
∂2t φ+∇2φ−m2c2φ = 0

〈φ2|φ1〉 = −
i

c2

∫

t=cst

d3x (φ1∂tφ
∗
2 − φ∗2∂tφ1)

• Define φ = 1√
2m
e−imc2tψ with ψ = ψLO + c−2ψNLO + · · ·

−
1

c2
∂2t ψ + 2im∂tψ +∇2ψ = 0

〈φ2|φ1〉 =

∫

t=cst

d3x

[

ψ∗
2ψ1 −

i

2mc2
(ψ1∂tψ

∗
2 − ψ∗

2∂tψ1)

]

• Define Ψ = ψ − 1
4m2c2

∇2ψ + · · · s.t. 〈φ2|φ1〉 =
∫

t=cst
d3xΨ∗

2Ψ1

i∂tΨ = −
1

2m
∇2Ψ−

1

8m3c2
∇4Ψ+O(c−4)
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QM on NR geometries: coupling prescription

• We assume for simplicity flat NC spacetime: τ = dt, h = dxidxi.

• Again φ = 1√
2m
e−imc2tψ where ψ = ψLO + c−2ψNLO + · · ·

• Using δφ = Ξµ∂µφ with Ξµ = ξµ + c−2ζµ + c−4χµ + · · · we find

δψLO = −imζtψLO

δψNLO = −imζtψNLO + ζt∂tψLO − imχtψLO + ζi∂iψLO

• The ζt, χt are gauge transformation parameters with gauge
fields mµ, Bµ, that appear in the expansion of the vielbeins.

• We will deal with ζi separately.
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QM on NR geometries: coupling prescription

• The coupling prescription is a statement about how to couple

EOMLO = 2im∂tψLO +∇2ψLO = 0

EOMNLO = 2im∂tψNLO +∇2ψNLO − ∂2t ψLO = 0

to the gauge fields mµ, Bµ.

• The guiding principle is to find covariant derivatives such that

δDµψLO = −imζtDµψLO

δDµψNLO = ζt∂tDµψLO − imζtDµψNLO − imχtDµψLO

• This leads to

DµψLO = ∂µψLO + immµψLO

DµψNLO = ∂µψNLO + immµψNLO + imBµψLO −mµDtψLO
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QM on NR geometries

• Minimal coupling then leads to

EOMLO = 2imDtψLO +DiDiψLO = 0

EOMNLO = 2imDtψNLO +DiDiψNLO −
1

c2
DtDtψLO + · · · = 0

• Terms on the dots are fixed by demanding covariance under

NLO diffeos (ζi) and residual diffeos (ξi) of the LO geometry.

• The last step is to redefine ψNLO to a suitable ψ̂NLO in order that
the Klein–Gordon inner product becomes the standard one:

〈ϕKG|ψKG〉 =

∫

t=cst

ddx
(

ψLO+c
−2ψ̂NLO+· · ·

)(

ϕ⋆
LO+c

−2ϕ̂⋆
NLO+· · ·

)
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QM on NR geometries: Kerr geometry

ds2Kerr = ds2flat +
ΣrsR

∆(R2 + a2)
dR2 +

rsR

Σ

(

−cdt+ a sin2 Θ dφ
)2

∆ = R2 + a2 − rsR , Σ = R2 + a2 cos2 Θ

• The parameters are rs =
2GM
c2

and a = J
cM

with mass M and

angular momentum J independent of c.

• ds2flat is written in oblate spherical coordinates (R,Θ, φ).

• Expanding in 1/c2 and transforming to ordinary spherical

coordinates (r, θ, φ) leads to the ‘Lense–Thirring metric’:

ds2Kerr = −

(

1−
2GM

rc2
+

2GJ2

Mr3c4
P2(cos θ)

)

c2dt2 +

(

1 +
2GM

rc2

)

dr2

+r2dθ2 + r2 sin2 θ dφ2 −
4GJ

rc2
sin2 θ dtdφ+O(c−4)
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QM on NR geometries: Kerr geometry

• Using the coupling prescription and defining the Hamiltonian H

as i∂tΨ = HΨ where Ψ = ψ(0) + c−2ψ(2) + . . . we find

H =
p2

2m
−
GmM

r
−

p4

8c2m3
+
GM

c2m

(

−
3

2r3
xipix

jpj +
1

2r3
L2

)

−
mG2M2

2c2r2
+

2GJ

c2r3
Lz +

mGJ2P2(cos θ)

Mc2r3
+
GM

4mc2
∆(r−1)

• This is the Hamiltonian of a spinless particle in a Kerr

background up to order c−2.

• This can be generalised to a spin 1/2 particle by starting with
the Dirac equation.

• So far all top-down, but what if we want to study a hydrogen
atom in a Kerr background?
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Thank You!
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