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Introduction

* Bronstein cube
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* NRQG is a bit of a misnomer. There is no dynamical gravity
to quantise. Think of quantum matter (described by
guantum mechanics) backreacting with a background that
reacts instantaneously. |
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Introduction

* |s there a well-defined non-relativistic limit of quantum
gravity/string theory?

* In string theory there

QM Sl exist dualities between
/ / QG and specific QFTs
NRQG . (holography, AdS/CFT,

n ...
I
oMb _ o L _ IR * Do such dualities exist
G In the NR domain, i.e.
L7 can NR strings be dual
NRE GR to some NR field theory?

* Limits of AdS/CFT called Spin Matrix Theory give rise to NR
strings dual to quantum mechanical limits of AAS/CFT. See
e.g. [Harmark, Kristjansson, Orselli, 2007/8], [Harmark, JH, Obers, 2017]. |
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Introduction: NR geometry

* Many of the recent developments in NR gravity, and NR
string theory rely on an improved understanding of NR
geometry.

* The most common example of a NR geometry is
Newton—Cartan geometry which is the arena of every day
life.

* Many other NR geometries have been found: type Il
Newton—Cartan, string Newton—Cartan, Aristotelian,
Carrollian geometries ...

* Qutside of GR and string theory, NR geometry has found
applications in fluid dynamics, condensed matter physics,
Horava—Lifshitz gravity, 2D/3D gravity, ...
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Introduction: NR approximations of GR

* ‘Drawbacks’ of Post-Newtonian approximation methods
(Blanchet—Damour and Will-Wiseman approaches):

° harmonic gauge
© strong no-incoming radiation boundary condition
© compactly supported matter

* An approach to address the first two issue is currently WIP
[JH, Musaeus).

* We do not have a universal method to define non-relativistic
approximations of GR coupled to any matter system
(compact or non-compact) in a any gauge.

* The PN approximation is a weak field approximation. There
is however also strong non-relativistic gravity. Can this be
useful?
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Introduction: PN corrections to quantum mechanics

* A very special case of NRQG is to take G — 0 and study
QM on a fixed background.

* |s there a coupling prescription for this?

* Suppose we know the 1/c corrections from SR how do we
couple the system to geometries that are obtained from 1/c
expansions of solutions of GR?

* What is the dynamics of a hydrogen atom in a Kerr
background to some order in 1/¢?
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Qutline

* Newton—Cartan geometry
* 1/c expansion of GR

* QM on NR geometries

Non-Relativistic Gravity — p. 7/23



Newton—Cartan Geometry

b b
metric - T(a,b):\t’—t\:/ - p(a,b)zug—fu:/ ds

* Here 7 = dt and ds = §;;dz'dx’

.
t=cst

* Write 7 = 7,dz* with coordinates z* = (¢,z"). Remove the
restriction to ¢ = cst in ds? and write ds* = h,, dz"dz" as a
quadratic form with signature (0,1,...,1).

—

* Under a Galilean boost with parameter A, = (0, v)
huw = By + AT + ATy + N7

* A manifold’s tangent space is the flat version of the manifold.
In general 7, h,,, and the parameter )\, are tensor fields.

= dt absolute time

= Ndt absolute foliation |
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Newton—Cartan Geometry

* Mass is like electric charge = gauge connection m,,
* Fields on curved NC geometry

1
O gy My, Ty) = /d4aje [5“5@ + 57"“/5}%” + JHom,,

fola energy current
THY momentum-stress tensor
JH mass current

* momentum = mass flux: 7 = J* < dm, = A, and
Uiy = Aty S A5

° mass conservation: 9,(eJ*) =0 < dm, = 0,0

* Triplet (7, h,, m,) With A, 0 gauge redundancy defines a
NC geometry.
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Newton—Cartan Geometry

* Geodesic in NC geometry: Newton’s equation

b
S:m/d)\< pr 2 mm:“)
27paP

* The time component of m,, is Newton’s potential.

* The fact that the mass is only an overall coupling is a
manifestation of the equivalence principle.

* Schrodinger wavefunction on NC geometry
5 = /d4aje (tmy*v* Dy — imyo D™ — h* Dy Dyap™)

vk, h* inverses of 7, and h, .
° U(1) symmetry is gauged by m,: D,y = 0,9 + imm,.
* Mass conservation = conservation of probability.
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1 /c expansion of GR

Review article: [JH, Obers, Oling, 2022]

* A convenient way to make the c-dependence of GR manifest
is to write g, = —c*T, T, + 11, and g"* = — S THTY + TIH.

e Signature of IL,,,, is (0,1,...,1).

* Light cones in tangent space have slope 1/c:
TM

1/c

» £, (spatial vielbeins labelled by a)
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1 /c expansion of GR

* So far we just reformulated GR in different variables. We will
now assume that we can Taylor expand 7, and II,,,, in 1 /c:

1 1 1
1y = Tu+c_zmu+c_43u+0(c_6) : = huv+c_2q)uv+0(c_4)

* This is what leads to the covariant 1/c expansion.

* Note here only even powers. For odd powers see [Ergen,
Hamamci, Van den Bleeken, 2020] and later in the PN expansion.

* This leads to the metric expansion:

Qv = —CQTMTy+hMV—27(MmV)+C_2 ((I)/u/ — M, Ty, — QT(MBV))+O(C_4)

* The 1/c expansion of the metric was pioneered by [Dautcourt,
1990/97] and generalised in [Van den Bleeken, 2017], [JH, Hansen,
Obers, 2018-20].
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1 /c expansion of GR

* We can view the 1/c expansion as an expansion around a
geometry described by 7, and h,,, where all the higher order
fields m, and ®,, are like gauge connections.

* Expanding the generator of infinitesimal diffeos:
= = ¢+ L¢P 4 O(c*) leads to gauge transformations for the
subleading fields m, and ®,, w.r.t. subleading diffeos ¢*.

* Local Lorentz transformations acting on 7), and II,,,, also get
expanded and lead to local Galilean transformations.

* Expanding the Einstein equations coupled to a point particle
leads to Newtonian gravity:

_ d— 2
RW:87TGd_1

PTuTy , dr =0

where we used the leading order Levi-Civita connection T,,.
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1 /c expansion of GR: Examples of weak limits

2Gm 2Gm\
2 2 2 2 2 2
dSSChW&I’ZSCh”d = —C (1 — 027’- ) dt + (1 — 6274 > dr +7r dQSQ

2 2 r’ 2 dr? 2 102
dSAdS(+)/dS(-) = —C 1 =aE l_2 dt -+ 1+ ﬁ +r dQSQ
lQ

* Consider m independent of c.
rdat =dt,  hgdatde’ =dr? +r2dQ%.,  mydat = ———dt

Point mass in flat spacetime with Newtonian pot. » = — <2,

* Take | = ¢/H with the Hubble constant H independent of c.

1
T drt =dt,  hydatde’ =dr* +r2dQ%., mydat = i§H2r2dt

Non-Relativistic Gravity — p. 14/23



1/0 expansion of GR: Example of a strong limit

 Strong limit: m = ¢*M; M independent of c? [Van den Bleeken, 2017].

2GM 2GM\ !
Tudrt = \/1 - dt hpdatde” = (1 - ) dr?4+r2dQge

mydz? =0 = ®,, drtdz”

* This strong gravity expansion of the Schwarzschild metric is
not captured by Newtonian gravity, but is still described as a
Newton—Cartan geometry.

* This provides us with a different approximation of GR as
compared to the post-Newtonian expansion.

* 71is no longer exact but 7 A dr = 0 (hypersurface orthogonality).
Strong limit captures gravitational time dilation: clocks tick
slower/faster depending on position on a constant time slice.
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QM on NR geometries

[JH, Have, Obers, Pikovski, to appear]

* Goal: given the Schrdodinger equation for a quantum system in
flat space time, including 1/c* corrections, find a coupling
prescription to couple this to 1/c? expanded geometries.

* A top-down approach for the Schwarzschild metric was used in
[Lammerzahl, 1995] and generalised In [Schwartz, Giulini, 2018].

* Here the focus is on coupling prescriptions (i.e. general
backgrounds and systematising results).

* We ignore backreaction: classically this leads to the Schrodinger—
Newton equation which violates the superposition principle.
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QM on NR geometries: The main idea

* KG equation and inner product on solution space:
1
—C—zafgb + V2 —m?cp =0
1

(P2|¢1) = 3 d*z (10105 — P3011)

t=cst
* Define ¢ = ﬁe—im@tw with ¢ = o + ¢ 2bnio + - - -

1
—C—Qa,?w + 2imOph + V) = 0

(P2|p1) = /t_cst d’x [¢§¢1 — ch (V10¢h5 — 30kt )

* Define U =9 — =5V + -+ s.t. (@2]|1) = [,_ o PaV5T,

1
U =——V0 —
10y 2mv Sm3c?

VA 4 O(c™?)
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QM on NR geometries: coupling prescription

e We assume for simplicity flat NC spacetime: 7 = dt, h = dx‘dz’.
* Again ¢ = ——e""""p where ¢ = Yo + ¢ Yo +
* Using §¢ = E10,,¢ with E# = & + ¢ 2CH + ¢4y # + - - - we find

dtho = —imC o
Sno = —imCnio + CObo — imx* Lo + C'OibLo

* The (%, x* are gauge transformation parameters with gauge
fields m,, B, that appear in the expansion of the vielbeins.

e We will deal with ¢* separately.
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QM on NR geometries: coupling prescription

* The coupling prescription is a statement about how to couple

EOM,o = 2imdo+ Vo =0
EOMyio = 2imdinio + VYnio — 0o = 0

to the gauge fields m,, B,,.
* The guiding principle is to find covariant derivatives such that

0Dupo = —im¢ Dutro
Dypno = C'ODubo — imC*Dynio — imx Dythio
* This leads to
Duo = OutdrLo + tmmuLo

Dyvno = Oudnio +immydnio + imBuYo — muDidro

Non-Relativistic Gravity — p. 19/23



QM on NR geometries

* Minimal coupling then leads to
EOMo = 2imDyo+ DiDipo =0

. 1
EOMno = 2imDinio + DiDinio — C—QDtthLo +..-=0

* Terms on the dots are fixed by demanding covariance under
NLO diffeos (¢*) and residual diffeos (£*) of the LO geometry.

* The last step is to redefine Lo to a suitable @ENLO In order that
the Klein—Gordon inner product becomes the standard one:

(ral|Yka) = / d'x (¢Lo—|—0_21@NLo+- i ) (g&f0+c_2gbm|_o+- . )

t=cst

Non-Relativistic Gravity — p. 20/23



QM on NR geometries: Kerr geometry

drsR AR + rsR

- . 92 2
AR + o) S ( cdt + a sin @dgb)

dsﬁerr — deQIat +
A =R°+a®—r,R, Y = R? + a® cos® ©

* The parameters are r; = 24 and a = -£- with mass M and

angular momentum J independent of c.

* ds . is written in oblate spherical coordinates (R, ©, ¢).

e Expanding in 1/¢? and transforming to ordinary spherical
coordinates (r, 0, ¢) leads to the ‘Lense—Thirring metric’:

2GM  2GJ? 2GM
dste, = —(1— G2 + &J Pg(COSH)) czdtQ—l—(l—l— >dr2

re Mr3ct rc?

4G J
2

+r2df* + r? sin” 0 dp* — sin® 0 dtd¢ + O(c™%)

rc |
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QM on NR geometries: Kerr geometry

* Using the coupling prescription and defining the Hamiltonian H
as 10, ¥ = HV where ¥ = 1)g) + ¢ *9)(2) + ... we find

9 4
P GmM ) GM 3 1
H — _ — 3 J _L
2m r 8c2m3  cZm ( or 0o ‘iz pj + o3
mG*M? 2GJ mGJ?Py(cosl) GM
— L, A(r—!
2212 i c2r3 i M c?r3 i 4mc? (r™)

* This is the Hamiltonian of a spinless particle in a Kerr
background up to order ¢—2

* This can be generalised to a spin 1/2 particle by starting with
the Dirac equation.

* So far all top-down, but what if we want to study a hydrogen
atom in a Kerr background?
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Thank You!
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