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• Cosmology Study of the origin, evolution, structure

formation, dynamics and ultimate fate of the Universe.

• High precision observations and new scientific

discoveries at theoretical ground make cosmology an

exciting field of research.

• Physical Universe is well described by Gravity

• Gravity Play a major role in the creation and

structure formation and also regulates the dynamics of

the Universe.

• Best description of Gravity General Relativity

INTRODUCTION



• 100+ years of journey of GR.

• Encountered with many

hurdles, axed many times

with observational

discoveries (1929 by Hubble’s

observation, 1965 by CMB

observation, 1998 by SN Ia

observation ...). But, stood

high with the successes.

Successes of general relativity through 

experiment and observation.



• SM suffers from initial singularity problem, age

problem, cosmological constant problem, flatness

problem, hierarchy problem etc. (Fundamental

problems associated to SM)

• Moreover, late-time cosmic acceleration can not be

explained within the framework of GR.

• Modifications of general relativity (modified gravity

models) required to address few of those problems

Massive gravity, Gauss–Bonnet gravity, f(R), f(T), f(R,T)

gravities are names of a few among the various

alternative theories proposed in the past few years.



• Affine gauge theory

• Alternatives to general relativity

• AQUAL

• Bi-scalar tensor vector gravity

• Bimetric gravity

• Brans–Dicke theory

• Chasles' theorem (gravitation)

• Chronology protection conjecture

• Composite gravity

• Conformal gravity

• Cosmological constant

• Dark fluid

• Democratic principle

• DGP model

• Einstein aether theory

• Einstein–Cartan theory

• Emergent gravity

• Entropic gravity

• An Exceptionally Simple Theory of 

Everything

• Extended theories of gravity

• F(R) gravity

• Fermat’s and energy variation principles 

in field theory

• Gauge gravitation theory

• Gauge theory gravity

• Gauge vector–tensor gravity

• Gauss–Bonnet gravity

• Gauss's law for gravity

• General relativity

VARIOUS THEORIES OF GRAVITY



• Geometrodynamics

• Graviscalar

• Gravitational field

• Hayward metric

• Higher-dimensional Einstein gravity

• Higher-dimensional supergravity

• History of gravitational theory

• Hořava–Lifshitz gravity

• Hoyle–Narlikar theory of gravity

• Induced gravity

• Kaluza–Klein theory

• Large extra dimension

• Le Sage's theory of gravitation

• Loop quantum gravity

• Lovelock theory of gravity

• Mach's principle

• Massive gravity

• Mechanical explanations of gravitation

• Metric-affine gravitation theory

• Modified Newtonian dynamics

• Newton–Cartan theory

• Newton's law of universal gravitation
• Nonsymmetric gravitational theory
• Nordström's theory of gravitation
• Nuts and bolts (general relativity)
• Parameterized post-Newtonian formalism
• Plebanski action
• Polarizable vacuum
• Pressuron
• Quantized inertia
• Quantum gravity
• Rainbow gravity theory
• Scalar theories of gravitation
• Scalar–tensor theory
• Scalar–tensor–vector gravity



• Semiclassical gravity
• Social gravity
• Stochastic electrodynamics
• Supergravity
• Teleparallelism
• Tensor–vector–scalar gravity
• Theory of everything
• Twisted geometries
• Twistor theory
• Unified field theory
• Whitehead's theory of gravitation
• World crystal
• Yilmaz theory of gravitation

Some more theories of the Universe also proposed

other than gravity in the past few decades.

Examples:

• Steady State theory

• Quasi steady state theory

• String theory

• Biocentrism

• Multiverse theory

• The Bouncing model

• Cyclic Universe theory

• The Black hole Universe theory

• Biocosmology (Multiverse, Life and 
Consciousness)

We start our discussion with the Einstein Field Equations in GR.

f(R), f(R,T), f(T), f(T,G), f(G), f(Q), f(Q,T), f(R,𝑳𝒎) theories of gravity



EINSTEIN FIELD EQUATIONS

Einstein Field Equations are given by

𝑮𝝁𝝂 = 𝟖𝝅𝑮𝑻𝝁𝝂
where, 𝑮𝝁𝝂 is the Einstein Tensor, 𝑻𝝁𝝂 is the stress energy tensor, 𝑮 is the

Newton’s gravitational constant.

𝑮𝝁𝝂 = 𝑹𝝁𝝂 −
𝟏

𝟐
𝒈𝝁𝝂𝑹

Where 𝑹𝝁𝝂 and 𝑹 are the Ricci tensor and Ricci scalar. 𝒈𝝁𝝂 is the metric tensor.

LHS of EFE MATHEMATICS

RHS of EFE PHYSICS

LHS of EFEs describes geometry of

the Universe and RHS the matter in

the Universe.



Some features of EFEs

• Einstein Field Equation is a tensor equation relating a

set of symmetric 𝟒 × 𝟒 tensors. Each tensor has 10

independent components. So, there are 10 numbers of

2nd order nonlinear partial differential equations in 4

independent variables. Bianchi identities reduce the

number of independent equations from 10 to 6.

• Trace 𝒈𝝁𝝂𝑮𝝁𝝂 = 𝒈𝝁𝝂𝑹𝝁𝝂 −
𝟏

𝟐
𝒈𝝁𝝂𝒈𝝁𝝂𝑹 ⟹ 𝑮 =

𝑹−
𝟏

𝟐
𝒏𝑹 =

𝟐−𝒏

𝟐
𝑹. For 𝒏 = 𝟒, 𝑮 = −𝑹. So, Einstein

tensor is also called the trace-reversed Ricci tensor.



• EFEs are fundamental

equations of GR

providing the equations

of motion for the

spacetime metric in the

presence of matter.

• Despite the simple

appearance

(𝑮𝝁𝝂 = 𝟖𝝅𝑮𝑻𝝁𝝂) of the

equations they are in

fact quite complicated.



• The EFEs reduce to Newton’s law of gravity by using

both weak-field approximation and the slow-motion

approximation. In fact, the constant G appearing in EFEs

is determined by making these two approximations.

• If the energy momentum tensor is that of an

electromagnetic field in free space, then the EFEs are

called the Einstein-Maxwell equations (with cosmological

constant).

• If the energy-momentum tensor is zero, then the FEs are

refers to as the vacuum field equations. 𝑹𝝁𝝂 = 𝟎.

• Next we discuss the solution of EFEs.



EXACT SOLUTION

• The solution of the EFEs are metrics of spacetime. The

solutions are hence called metrics. These metrics describe the

structure of the spacetime including the inertial motion of

objects in the spacetime.

• As the FEs are non-linear, they cannot always be completely

solved (without making approximations).

• However, approximations are usually made in these cases

(commonly referred as post-Newtonian approximations.).

• Even so, there are numerous cases where the field

equations have been solved completely and those are

called exact solutions.



• The study of exact solutions of EFEs is one of the

activities of cosmology.

• It leads to the prediction of black holes and to different

models of evolution of the Universe.

• Exact solutions of Einstein field equations is important

in studying the nature & behavior of the physical

Universe.

• The first exact solution of the EFEs is the

Schwarzschild exterior solution, wherein the prefect

fluid equation of state was considered as a

supplementary condition.



• Despite of the high non linearity of the EFEs, various

exact solutions are obtained for static and spherically

symmetric metrics.

• Einstein's static solution, de-Sitter solution, Tolman's

solutions, Adler's solutions, Buchdahl's solution, Vaidya

and Tikekar solution, Durgapal’s solutions, Knutsen's

solutions and many more well-known solutions of EFEs

are obtained which are summarized in the literature (D.

Kramer et al., “Exact solutions of Einstein’s equations”,

Cambridge, (1980).).

• All those phenomenological cosmological models explain

the Universe theoretically very well.





SOLUTIONS OF EFEs ARE USUALLY OBTAINED

• By assuming symmetries on the metric and other simplifying

restrictions.

• Two basic assumptions are that galaxies are homogeneously

distributed on galaxies larger than 50 Mpc and that the Universe

is isotropic around us on angular scales larger than about 10

degrees.

• With this simplified assumptions that our place is the Universe is

not special at all, then isotropy around all its points is inferred.

• Finally, there is a theorem in geometry, which tells us that if

every observer sees the same picture of the Universe when

looking at different directions, then the Universe is

homogeneous.



• These assumptions boil down into the (Friedmann-) Robertson-

Walker metric. Our Universe can be viewed as an expanding,

isotropic and homogeneous spacetime, and the line element

reads;

𝒅𝒔𝟐 = −𝒅𝒕𝟐 + 𝒂𝟐 𝒕
𝒅𝒓𝟐

𝟏 − 𝒌𝒓𝟐
+ 𝒓𝟐 𝒅𝜽𝟐 + 𝒔𝒊𝒏𝟐𝜽𝒅𝝓𝟐

𝒌 = ±𝟏 is the curvature parameter describing the geometry of

spatial sections and 𝒂(𝒕) is the scale factor. We have chosen the

units with 𝒄 = 𝟏. The coordinates (𝒓, 𝜽, 𝝓) are commoving

coordinates.

• Up to now, we have discussed about the geometry (LHS of

EFEs) part. Following we, discuss the matter (RHS of EFEs).



• Given a source energy-momentum tensor, an exact

solution to the Einstein equations, where the

spacetime metric functions are expressed in terms of

elementary or well-known special functions.

• We have seen that simplifications in geometry are

required to model the Universe. In the same spirit

reduction of sophistication in the description of

matter/energy is also required.

• Simplicity on the one hand, and consistency with

observations in the other, suggest adopting the

perfect fluid picture.



• So, for a perfect fluid source i.e. if we assume the matter

content in the Universe is filled with perfect fluid, then

the energy momentum tensor takes the form:

𝑻𝝁𝝂 = 𝝆 + 𝒑 𝒖𝝁𝒖𝝂 + 𝒑𝒈𝝁𝝂
where 𝝆, 𝒑, 𝒖𝝁 representing the energy density,

pressure and velocity of the fluid.

• Then the Einstein Field Equations in the FLRW

background reads

𝑯𝟐 =
ሶ𝒂

𝒂

𝟐

=
𝟖𝝅𝑮

𝟑
෍

𝒊

𝝆𝒊 −
𝒌

𝒂𝟐
(𝟏)



ሶ𝑯 = −𝟒𝝅𝑮෍

𝒊

(𝝆𝒊+𝒑𝒊) +
𝒌

𝒂𝟐
(𝟐)

where 𝑯 is the Hubble parameter.

• These are two independent equations known as

Friedmann equation and Raychaudhuri equation.

• From Einstein equations one can derive other two

important equations, the energy conservation equation

and acceleration equation, which tells us about the

evolution of the spatial separation between geodesics.



ሶ𝝆 + 𝟑𝑯෍

𝒊

(𝝆𝒊+𝒑𝒊) = 𝟎 (𝟑)

And
ሷ𝒂

𝒂
= −

𝟒𝝅𝑮

𝟑
෍

𝒊

(𝝆𝒊+𝟑𝒑𝒊) (𝟒)

• These preliminaries suggest the interplay between the

matter/energy content of the Universe and its

geometry have a crucial influence in its final fate.

• Out of the four equations above, only two are

independent with three variables 𝒂, 𝝆, 𝒑.



• In order to find a consistent solution, we need to close

the system and we need one more equation.

• Since, we have considered the perfect fluid source, a

relation between it’s pressure and density is natural

and the simplest form of the equation of state would be

a linear one i.e.

𝒑 = 𝒘𝝆 (𝟓)
where, different values of the 𝒘 describe different

matter content in the Universe.

• Now, we have three equations with three variables and

we can have a consistent solution to the EFEs.



• For flat geometry (𝒌 = 𝟎), EFEs can be solved for;

Electromagnetic Radiation (Photon): 𝒘 = 𝟏/𝟑

solution will be: 𝒂 𝒕 ∝ 𝒕
𝟏

𝟐 𝝆 ∝ 𝒂−𝟒

Incoherent matter (Cosmic Dust): 𝒘 = 𝟎

solution will be: 𝒂 𝒕 ∝ 𝒕
𝟐

𝟑 𝝆 ∝ 𝒂−𝟑

• In both the cases, we get the deceleration

parameter 𝒒 = −
𝒂 ሷ𝒂

ሶ𝒂𝟐
= +𝟏 𝐫𝐚𝐝𝐢𝐚𝐭𝐢𝐨𝐧 𝐚𝐧𝐝 𝒒 =

+
𝟏

𝟐
(𝐝𝐮𝐬𝐭) > 𝟎 implying the decelerated

expansion of the Universe.



• Similarly, for a constant energy density ( 𝝆 =
𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕 ⟹ ሶ𝝆 = 𝟎), we have from the continuity

equation, 𝒑 = −𝝆 or 𝒘 = −𝟏 and Hubble parameter

comes out to be constant. The scale factor follows 𝒂 ∝
𝒆𝑯𝒕 and 𝒒 = −𝟏. It’s the de-Sitter Universe.

• Moreover, for a static Universe (𝒂 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕) and

we have 𝑯 = 𝟎, ሷ𝒂 = 𝟎. From equations (2) and (5),

we have 𝝆 = −𝟑𝒑 =
𝟑𝒌

𝟖𝝅𝑮𝒂𝟐
⇒ 𝒌 = 𝟏.

• However, the linear equation of state 𝒑 = 𝒘𝝆 is not the

only choice. EoS may be quadratic or other forms too.

In general 𝒑 = 𝒇 𝝆 .



• If we observe the technique of finding a solution of the

EFEs, we can see:

• There are 3 variables 𝒂(𝒕), 𝝆(𝒕), 𝒑(𝒕) that may take

any functional form. For example:

𝒂 𝒕 = 𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕, 𝒂 𝒕 = 𝒆𝜶𝒕, 𝒂 𝒕 = 𝒕𝒏, or any complicated function.

𝝆 𝒕 = 𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕, 𝝆 𝒕 = 𝒆𝜶𝒕, 𝝆 𝒕 = 𝒕𝒏, or any complicated function.

𝒑 𝒕 = 𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕, 𝒑 𝒕 = 𝒆𝜶𝒕, 𝒑 𝒕 = 𝒕𝒏, or any complicated function.

Or a relation between the variables e.g. 𝒑 = 𝒇 𝝆

• So, mathematically, we have choices to consider a

functional form of the variables (time 𝒕 or redshift 𝒛) or

a relation between them. They may contain either one

or more arbitrary parameters 𝜶,𝜷, 𝒏,𝒘 etc.



Various functional forms of 𝒇 𝝆 considered:



• With the linear form of EoS 𝒑 = 𝒘𝝆, different values

of the 𝒘 describe different matter content in the

Universe other than radiation/ dust matter.

• For example: For 𝒘 = −𝟏 , it represents vacuum

energy, for 𝒘 < −
𝟏

𝟑
(≠ −𝟏), represents quintessence

and 𝒘 < −𝟏, represents phantom.

• In the next section, we discuss these in relation to the

recent discovery of Late-time cosmic acceleration and

our motivation of (of this talk) COSMOLOGICAL

PARAMETRIZATION to solve EFEs.



DARK ENERGY

• Before 1990’s, it was a common understanding that

the expansion of the Universe is slowing down due

to attractive gravity and theorists were working on

models of the Universe with decelerating expansion.

• Moreover, solutions of standard model with normal

matter sources are found with a positive value of

deceleration parameter.

• But, the observations on Type Ia supernovae

suggested accelerating expansion of the Universe.





• This is the birth of a new phase of cosmological

studies and cosmologists started to think about

late-time cosmic acceleration with an earlier

phase of deceleration.

• This discovery of cosmic acceleration again

shook the foundation of general relativity.

• Later on the idea of cosmic acceleration

received more and more evidence by many other

observations as well as at theoretical ground.



• DE was supported by some independent

observations e.g. the BOOMERanG, Maxima,

CMBR, BAO, 2dF Galaxy Redshift Survey, DES

etc.

• Much more precise measurements from WMAP

have continued to support the SM and give more

accurate measurements of some cosmological

parameters.

• The idea of late-time cosmic acceleration is now

playing a major role in precision cosmology.



• Now, the question arises, how to get accelerating

expanding solutions?
• Within the background of GR, it is difficult to get

acceleration with normal matter source (𝝆 > 𝟎, 𝒑 > 𝟎).

• Two simplest ways are Modifying the left hand

side of EFEs (Geometric modification) and inserting

additional term in the right hand side of EFEs with

high negative pressure (Physical modification).

• These two modifications produced a plethora of

cosmological models in the past twenty five years

leading to accelerating expanding solutions.



• However, these are not the only possibilities and is an

open question till. One can deduce accelerating

solutions without any modification or incorporating

extra degrees of freedom too.

• The simplest and most significant way to get

accelerating solutions is by incorporating the Einstein’s

cosmological constant in the RHS of EFEs but as a

negative matter source.

• Einstein introduced cosmological constant (CC) into

field equations as he was convinced with static

Universe. The modifications of EFEs can be seen as:



Einstein’s modified FE



• The modified EFEs with CC can be written as

ሶ𝒂

𝒂

𝟐

=
𝟖𝝅𝑮

𝟑
𝝆 −

𝒌

𝒂𝟐
+
𝚲

𝟑
𝟔

ሷ𝒂

𝒂
= −

𝟒𝝅𝑮

𝟑
𝝆 + 𝟑𝒑 +

𝚲

𝟑
𝟕

• For a dust (𝒑 = 𝟎) dominated Universe in presence of

CC, Einstein’s static Universe corresponds to, 𝛒 =
𝚲

𝟒𝝅𝑮
,
𝒌

𝒂𝟐
= 𝚲. 𝚲 must be positive since 𝛒 > 𝟎 implying for

a static universe 𝒌 = +𝟏 (closed) with a radius 𝒂 =
𝟏

𝚲
.



• Although, 𝚲𝑪𝑫𝑴 model is consistent with

observations, it suffers from the long standing

Cosmological Constant problem due to the non-

dynamical equation of state of 𝚲.

• The incorporation of DE resolved the problem of late-

time cosmic acceleration largely but a new problem

arose, “what is the suitable candidate of dark

energy?”, due to the non evolving nature of the

cosmological constant, which is plagued with fine

tuning problem.

• So, models with dynamical EoS are explored.



• The data from the globular

cluster also reveals that the

age of certain objects in the

Universe could be larger

than the present estimated

age of the Universe in

standard model with

normal matter.

• As of now, the only known

resolution of this puzzle is

provided by invoking the

concept of late-time cosmic

acceleration.



• Although, the nature of DE is unknown but it is generally

considered to be homogeneous and permeates all over space.

• The total energy budget in the Universe is estimated as:



• There were several attempts to solve the long

standing cosmological constant problem even

before the discovery of cosmic acceleration by

varying 𝚲.

• In this direction, authors have considered some

variation laws for the cosmological constant in the

past forty years, commonly known as “𝚲-varying

cosmologies” or “Decaying vacuum cosmologies”.

Following is list of such decay laws of 𝚲.

Dark Energy Modelling Beyond 𝚲CDM



𝚲~𝒂−𝒏

𝚲~𝑯𝒏

𝚲~𝒕𝒏

𝚲~𝒒𝒏

𝚲~𝝆
𝚲~𝒆−𝜷𝒂

𝚲~𝑪 + 𝒆𝜷𝒕

𝚲 = 𝚲(T), T is Temperature

𝚲 = 𝟑𝜷𝑯𝟐

𝚲 = 𝟑𝜷𝑯𝟐 + 𝜶𝒂−𝟐

𝚲 = 𝜷
ሷ𝒂

𝒂

𝚲 = 𝟑𝜷𝑯𝟐 + 𝜶
ሷ𝒂

𝒂
𝒅𝚲

𝒅𝒕
= 𝜷𝚲 − 𝚲𝟐

Here, 𝜶,𝜷, 𝒏, 𝑪 𝐚𝐫𝐞 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭𝐬.



• The problem can also be alleviated with a dynamically

evolving scalar field.

• Dynamically decaying 𝚲 , vacuum energy have also

been used to explain late-time cosmic acceleration.

• A variety of scalar field models have been proposed to

describe the late-time cosmic acceleration including

quintessence, phantoms, K-essence, Tachyon scalar

fields and some more.

• Some other DE models with scalar field are

Chameleons, Galileons, Holographic scalar field and

non-minimally coupled scalar field.



• A quite different approach for the description of

cosmic acceleration is to consider the Chaplygin gas

EoS (and its modifications), Polytropic gas EoS,

Vander wall’s fluid and bulk viscous fluid.

• However, the search for suitable candidate of dark

energy is still an open question.

• Here, we shall discuss the theoretical approach to some

dark energy models in classical general relativity and

also discuss the reconstructions of these models with

cosmological parametrization.



There are observations which constrain the value of EoS

parameter 𝒘 today refers towards the time evolution of 𝒘.
The DE may be represented as a standard scalar field

𝝓minimally coupled to gravity with Lagrangian,

ℒ =
𝟏

𝟐
𝝏𝝁𝝓𝝏

𝝁𝝓− 𝑽 𝝓 (𝟏𝟎)

The stress energy-tensor take the form of a perfect fluid

represented by

𝑻𝝁𝝂
𝝓
= (𝝆𝝓+𝒑𝝓)𝑼𝝁𝑼𝝂𝒈𝝁𝝂 (𝟏𝟏)

Scalar Field Model of dark Energy



where 𝒑𝝓 =
ሶ𝝓𝟐

𝟐
− 𝑽(𝝓), 𝝆𝝓 =

ሶ𝝓𝟐

𝟐
+ 𝑽(𝝓).

The equation of state is then 𝒘𝝓 =
𝒑𝝓

𝝆𝝓
=

−𝟏+
ሶ𝝓𝟐

𝟐𝑽

𝟏+
ሶ𝝓𝟐

𝟐𝑽

which gives

rise to different candidates of scalar field dark energy

depending upon the potential 𝑽(𝝓) of the field 𝝓. For

slow roll scalar field (potential dominated) i.e. 𝑽 𝝓 ≫
ሶ𝝓𝟐, 𝒘𝝓 = −𝟏 and act like a cosmological constant.

With this set up the EFEs with scalar field in FLRW

background yields the following field equations



Friedmann equation

𝑯𝟐 =
𝟏

𝟑𝑴𝒑𝒍
𝟐
(𝝆 + 𝝆𝝓) 𝟏𝟐

And the evolution of the scalar field is governed by the

wave equation

ሷ𝝓 + 𝟑𝑯 ሶ𝝓 +
𝒅𝑽(𝝓)

𝒅𝝓
= 𝟎 (𝟏𝟑)

Where, 𝑴𝒑𝒍 = 𝟖𝝅𝑮 −𝟏/𝟐. With this basic set up, we can

explore the physical nature and geometrical behaviour of

the Universe with certain constraints.



In the current cosmology, it is a common trend for the

theoreticians to construct models of the Universe with this

basic set up and with certain physical assumptions that solve

the system explicitly and cosmic history can be studied from

the beginning to present phase of the Universe and

eventually the fate. On the contrary, the dynamical system

approach can also be used to explore without finding the

exact solutions.

I am interested in finding the exact solutions to field

equations in a model independent way or the cosmological

parametrization and study the various phases of Universe to

discuss various phenomena with observation.



COSMOLOGICAL PARAMETERS

Einstein Field Equations is generally characterized by the

following basic parameters.

Geometrical Parameters Definition Physical Parameters Definition

Scale factor 𝒂 Energy density 𝝆

Hubble parameter 𝑯 Pressure 𝒑

Deceleration parameter 𝒒 EoS parameter 𝒘

Physical Parameters with DE Definition

Cosmological Constant Ʌ

Scalar field 𝝓

Scalar field potential 𝑽

Some other parameters are

Density parameter (𝜴), Shear

( 𝝈 ) for anisotropic

background, scalar expansion

(𝜽), jerk parameter (𝒋) and so

on.



COSMOLOGICAL PARAMETRIZATION

• We have already mentioned earlier, in FLRW cosmology,

EFE contains three variables 𝒂 𝒕 , 𝝆 𝒕 , 𝒑(𝒕) with two

independent equations that can be solved by supplementing

the EoS and system becomes more complicated with the

addition of an extra degree of freedom (DE).

• In literature, there are several physical arguments to

consider a functional form (parametrization) of any

cosmological parameter (𝒂,𝑯, 𝒒, 𝒋, 𝝆, 𝒑,𝒘,𝛀 etc.) with

some free parameters generally termed as model

parameters that can be constrained through any

observational datasets.



• If we examine closely, we might remark that the primary

type of parametrization of geometrical parameters is

studied to produce exact solutions that address the

expanding dynamics of the universe and give the time

evolution of the physical parameters 𝝆, 𝒑, or 𝒘. The

second type of parametrization of physical parameters is

commonly used to explain physical features of the

universe.

• The model-independent way approach has the potential of

rebuilding the cosmic history of the universe as well as

interpreting some of the universe’s phenomena without

affecting the background theory.



• This model-independent study of cosmological models

termed as COSMOLOGICAL PARAMETRIZATION.

• Furthermore, this strategy gives the easiest way to

theoretically overcome several problems of standard

model, including the initial singularity problem,

cosmological constant problem, etc. and also the

Hubble tension.

• In the following, I have summarized these cosmological

parametrizations used in the past 20-40 years in some

detail.

















EXEMPLIFICATION

where





Taylor series expansion of a(t) in the vicinity of the present

time 𝑡 = 𝑡0 is,

Various other relations can also be established

among these cosmological parameters.



Motivated by the discussion, we

consider the parametrization of H as



• This one parametrization covers many models obtained in the past
few decades in different schemes of parametrization under one
umbrella.

• This simple modification in the functional form of HP can give rise to
interesting cosmological phenomena such as big rip singularity,
bounce and others. Few models admit transition from deceleration to
acceleration as suggested by some observations.





Plots

of 𝒒(𝒕)~𝒕 for

models

obtained.

Some models

show eternal

acceleration

and some

show

deceleration-

acceleration

phase

transition.

Some show

acceleration-

deceleration

transition.



For negative 𝜶 and 𝜷, two models show

DEC-ACC phase transition and the HP can

be expressed in terms of redshift as



In order to understand the late time behavior of the Universe, it is convenient to

express all the cosmological parameters in terms of redshift. (Redshift may be

characterized by the relative difference between the observed and emitted wavelengths

of an object and is related to scale factor by, 𝟏 + 𝒛 =
𝝀𝒏𝒐𝒘

𝝀𝒕𝒉𝒆𝒏
=

𝒂𝒏𝒐𝒘

𝒂𝒕𝒉𝒆𝒏
=

𝒂𝟎

𝒂
.)

The 𝒕 − 𝒛 relationship can be established for the discussed models M1 and M2

respectively as,

and

Model M1

Model M2

Now, the models M1 and M2 are described as, 

The two models can now be compared with some observational datasets. Also, the

model parameters 𝜶 & 𝜷 are to be estimated through datasets.



Three datasets are considered here, namely Hubble datasets (Hz), Type Ia supernovae

datasets (SN) and Baryon Acoustic Oscillations datasets (BAO). Using some statistical

techniques, the model parameters 𝜶 & 𝜷 are estimated as follows,

Using these values, we can see the fitting of our 

models M1 and M2 with the datasets and compare 

with the standard 𝚲CDM model.



The maximum likelihood contours for the model parameters 𝜶 & 𝜷 are shown in the

following figures for independent Hz datasets and combined Hz+SN, SN+BAO and

Hz+SN+BAO datasets respectively with 𝟏𝝈, 𝟐𝝈 𝒂𝒏𝒅 𝟑𝝈 error contours in the 𝜶 − 𝜷 plane.



The evolution of the deceleration parameter can be 

seen from the following figure with the numerical 

values of the mode parameters for both the models.



Statefinder diagnostics and Om diagnostic analysis are used to distinguish various dark energy

models. The following plots show a comparison of our models with some standard models.



Finally, one can calculate the physical parameters (𝝆𝝓, 𝑽(𝝓), 𝝎𝝓, 𝛀) for the considered

models M1 and M2. The behavior is shown in the following figures.



The age of the Universe in both the models is calculated and shown in the following table.

Recently, we have discussed this model with improved datasets such as

Pantheon, updated BAO and CMB datasets and the results are improved.

Using the constrained values of the model parameters, we have extended the

analysis in modified f(Q,T) gravity and performed some more cosmological

tests.



















MODIFIED GRAVITY











• Thus, one can obtain exact solutions to Einstein

field equations using the concept of cosmological

parametrization (a detailed list have been provided

here) for any choice of dark energy to explain the

cosmic acceleration as well as to alleviate some

standard problems of GR.

• The cosmological dynamics can be described for the

reconstructed models and the model parameters

(and also the integrating constants) are to be

constrained through observational datasets.



THANK YOU   


