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INTRODUCTION

Cosmology m==) Study of the origin, evolution, structure
formation, dynamics and ultimate fate of the Universe.
High precision observations and new scientific
discoveries at theoretical ground make cosmology an
exciting field of research.

Physical Universe is well described by =) Gravity
Gravity mm=) Play a major role in the creation and
structure formation and also regulates the dynamics of
the Universe.

Best description of Gravity | » General Relativity




100+ years of journey of GR.
Encountered with many
hurdles, axed many times
with observational
discoveries (1929 by Hubble’s
observation, 1965 by CMB
observation, 1998 by SN Ia
observation ...). But, stood
high with the successes.

Successes of general relativity through
experiment and observation.

Gravitational lens

-

White holes

Black holee

''''''' ———
A

TR
ST

waves

.

pa—

wbrm%ges




c SM| » suffers from initial singularity problem, age
problem, cosmological constant problem, flatness
problem, hierarchy problem etc. (Fundamental
problems associated to SM)

* Moreover, late-time cosmic acceleration can not be
explained within the framework of GR.

* Modifications of general relativity (modified gravity
models) required to address few of those problems >
Massive gravity, Gauss—Bonnet gravity, f(R), f(T), f(R,T)
gravities are names of a few among the various
alternative theories proposed in the past few years.




VARIOUS THEORIES OF GRAVITY

* Affine gauge theory * Einstein—Cartan theory

* Alternatives to general relativity * Emergent gravity

* AQUAL * Entropic gravity

* Bi-scalar tensor vector gravity * An Exceptionally Simple Theory of
* Bimetric gravity Everything

* Brans—Dicke theory * Extended theories of gravity

* Chasles' theorem (gravitation) * F(R) gravity

* Chronology protection conjecture * Fermat’s and energy variation principles
* Composite gravity in field theory

* Conformal gravity * Gauge gravitation theory

* Cosmological constant * Gauge theory gravity

* Dark fluid * Gauge vector—tensor gravity

* Democratic principle * Gauss—Bonnet gravity

* DGP model * Gauss's law for gravity

* Einstein aether theory * General relativity



* Geometrodynamics * Mechanical explanations of gravitation

* Graviscalar * Metric-affine gravitation theory

* Gravitational field * Modified Newtonian dynamics
 Hayward metric * Newton—Cartan theory

* Higher-dimensional Einstein gravity * Newton's law of universal gravitation
 Higher-dimensional supergravity  Nonsymmetric gravitational theory

» History of gravitational theory * Nordstrom's theory of gravitation

* Nuts and bolts (general relativity)

* Parameterized post-Newtonian formalism
* Plebanski action

* Polarizable vacuum

* Pressuron

* Horava—Lifshitz gravity

* Hoyle—Narlikar theory of gravity
* Induced gravity

* Kaluza—Klein theory

* Large extra dimension « Quantized inertia

* Le Sage's theory of gravitation * Quantum gravity

* Loop quantum gravity * Rainbow gravity theory
 Lovelock theory of gravity * Scalar theories of gravitation
 Mach's principle * Scalar—tensor theory

* Massive gravity * Scalar—tensor—vector gravity



» Semiclassical gravity Some more theories of the Universe also proposed

« Social gravity other than gravity in the past few decades.
* Stochastic electrodynamics Examples:

* Supergravity * Steady State theory

* Teleparallelism * Quasi steady state theory

* Tensor—vector—scalar gravity « String theory

* Theory of everything
* Twisted geometries
* Twistor theory

* Biocentrism
* Multiverse theory

* Unified field theory * The !30un.cing model

* Whitehead's theory of gravitation ° Cyclic Universe theory

* World crystal * The Black hole Universe theory

* Yilmaz theory of gravitation * Biocosmology (Multiverse, Life and
Consciousness)

f(R), f{(R,T), f(T), f(T,G), f(G), f(Q), f(Q,T), f(R,L,,) theories of gravity

We start our discussion with the Einstein Field Equations in GR.



EINSTEIN FIELD EQUATIONS

Einstein Field Equations are given by

G,, = 8nGT,,
where, G, is the Einstein Tensor, T, is the stress energy tensor, G is the

Newton’s gravitational constant.

1
Guv — Ruv _Egva
Where R, and R are the Ricci tensor and Ricci scalar. g, is the metric tensor.

LHS of EFEs describes geometry of
the Universe and RHS the matter in
the Universe.

LHS of EFE m==) MATHEMATICS
RHS of EFE ===) PHYSICS

Ry — (112)Rgy = (87G)T,y

Volume of Space-Time
Curvature

Forces experienced as an
object moves within the
Space-Time Curvature

The force field's function
on the Space-Time
manifold




SOME FEATURES OF EFES

Einstein Field Equation is a tensor equation relating a
set of symmetric 4 X 4 tensors. Each tensor has 10
independent components. So, there are 10 numbers of
2"d order nonlinear partial differential equations in 4
independent variables. Bianchi identities reduce the
number of independent equations from 10 to 6.

Trace == g""G,, = g""R,, — %guvguvR = G =
R — %nR = 2;—"R. For n=4,G = —R. So, Einstein

tensor is also called the rrace-reversed Ricci tensor.




* EFEs are fundamental
equations of GR
providing the equations
of motion for the
spacetime metric in the
presence of matter.

* Despite the simple
appearance
(G,, = 8mGT,,) of the
equations they are In
fact quite complicated.

Einstein's Field Equations
(The General Theory of Relativity)

fb/page/Cosmological Astrophysics

G+ /gy = 2 GT
— \ G62™)

tells matter-energy tells matter-energy
how to curve how to move through
space-time curved space-time

The equations completely changed
how we understood the nature and
evolution of the Universe.

Conclusion:-The most attractive
parts of the Universe are Curvy.




The EFEs reduce to Newton’s law of gravity by using
both weak-field approximation and the slow-motion
approximation. In fact, the constant G appearing in EFEs
is determined by making these two approximations.

If the energy momentum tensor is that of an
electromagnetic field in free space, then the EFEs are
called the Einstein-Maxwell equations (with cosmological
constant).

If the energy-momentum tensor is zero, then the FEs are
refers to as the vacuum field equations. R, = 0.

Next we discuss the solution of EFKEs.



EXACT SOLUTION

* The solution of the EFEs are metrics of spacetime. The
solutions are hence called metrics. These metrics describe the
structure of the spacetime including the inertial motion of
objects in the spacetime.

* As the FEs are non-linear, they cannot always be completely
solved (without making approximations).

* However, approximations are usually made in these cases
(commonly referred as post-Newtonian approximations.).

* Even so, there are numerous cases where the field
equations have been solved completely and those are
called exact solutions.




The study of exact solutions of EFEs is one of the
activities of cosmology.

It leads to the prediction of black holes and to different
models of evolution of the Universe.

Exact solutions of Einstein field equations is important
in studying the nature & behavior of the physical
Universe.

The first exact solution of the EFEs 1is the
Schwarzschild exterior solution, wherein the prefect
fluid equation of state was considered as a
supplementary condition.



Despite of the high non linearity of the EFEs, various
exact solutions are obtained for static and spherically
symmetric metrics.

Einstein's static solution, de-Sitter solution, Tolman's
solutions, Adler's solutions, Buchdahl's solution, Vaidya
and Tikekar solution, Durgapal’s solutions, Knutsen's
solutions and many more well-known solutions of EFEs
are obtained which are summarized in the literature (D.
Kramer et al., “Exact solutions of Einstein’s equations”,
Cambridge, (1980).).

All those phenomenological cosmological models explain
the Universe theoretically very well.



Applications of exact solutions in Astrophysics

v Slowly rotating stars and planets: The Schwarzschild solution
+ Static black holes: The Schwarzschild solution

+ OStar interiors: e.g. Tolman, Buchdahl, Heintzmann solutions

+ Neutron stars: Tolman VI and Durgapal solutions
+ Rotating black holes: The Kerr-(Newman) solution
+ Gravitational waves: gravitational plane wave exact solution

+ Standard model of cosmology: The Friedmann-Lemaitre-
Robertson-Walker solution

+ Inhomogeneous Cosmological models: e.g. Lemaitre-Tolman-Bondi
solutions, Szekeres solutions, Oleson solutions




SOLUTIONS OF EFEs ARE USUALLY OBTAINED

By assuming symmetries on the metric and other simplifying
restrictions.

Two basic assumptions are that galaxies are homogeneously
distributed on galaxies larger than 50 Mpc and that the Universe
is isotropic around us on angular scales larger than about 10
degrees.

With this simplified assumptions that our place is the Universe is
not special at all, then isotropy around all its points is inferred.
Finally, there is a theorem in geometry, which tells us that if
every observer sees the same picture of the Universe when
looking at different directions, then the Universe Iis
homogeneous.



* These assumptions boil down into the (Friedmann-) Robertson-
Walker metric. Our Universe can be viewed as an expanding,
isotropic and homogeneous spacetime, and the line element

reads;

ds?

—dt* + a?(t)

dr?

1 — kr?

r%(d0? + sin*0d¢p?)

k = +1 is the curvature parameter describing the geometry of
spatial sections and a(t) is the scale factor. We have chosen the
with ¢ = 1. The coordinates (7,0,¢) are commoving
coordinates.
* Up to now, we have discussed about the geometry (LHS of
EFEs) part. Following we, discuss the matter (RHS of EFEs).

units



* Given a source energy-momentum tensor, an exact
solution to the Einstein equations, where the
spacetime metric functions are expressed in terms of
elementary or well-known special functions.

* We have seen that simplifications in geometry are
required to model the Universe. In the same spirit
reduction of sophistication in the description of
matter/energy Is also required.

* Simplicity on the one hand, and consistency with
observations In the other, suggest adopting the

perfect fluid picture.



So, for a perfect fluid source i.e. if we assume the matter
content in the Universe is filled with perfect fluid, then
the energy momentum tensor takes the form:

Tuv — (p T p)uuuv T PYuv
where p, p, u, representing the energy density,

pressure and velocity of the fluid.
Then the Einstein Field Equations in the FLRW

background reads

o _ (@) _8mG koo
=(3) =32 m @
l



. k
H=-476 ) (pitp)+—;  (2)
i
where H is the Hubble parameter.
* These are two independent equations known as

Friedmann equation and Raychaudhuri equation.

* From Einstein equations one can derive other two
important equations, the energy conservation equation
and acceleration equation, which tells us about the
evolution of the spatial separation between geodesics.



p+ 3Hz(pi+pi) =0 (3)

And
a 4G
2 T3 .(pi+3pi) (4)
l
* These preliminaries suggest the interplay between the
matter/energy content of the Universe and its
geometry have a crucial influence in its final fate.
* Out of the four equations above, only two are

independent with three variables a, p, p.




 In order to find a consistent solution, we need to close
the system and we need one more equation.

* Since, we have considered the perfect fluid source, a
relation between it’s pressure and density is natural

and the simplest form of the equation of state would be
a linear one l.e.

p=wp (5)
where, different values of the w describe different
matter content in the Universe.
* Now, we have three equations with three variables and
we can have a consistent solution to the EFEs.



* For flat geometry (k = 0), EFEs can be solved for;
Electromagnetic Radiation (Photon): w =1/3

1
solution will be: a(t) «< tz p xa?

Incoherent matter (Cosmic Dust): w =0

2
solution will be: a(t) o« t3 pxa’

* In both the cases, we get the deceleration
aa

parameter q = = +1 (radiation) and g =

aZ
+% (dust) > 0 implying the decelerated

expansion of the Universe.



Similarly, for a constant energy density ( p =
Constant = p =0), we have from the continuity
equation, p = —p or w = —1 and Hubble parameter
comes out to be constant. The scale factor follows a
e and g = —1. It’s the de-Sitter Universe.

Moreover, for a static Universe (a = constant) and

we have H = 0, a = 0. From equations (2) and (5),

we have p = —3p = X S k=1.

8nGa?
However, the linear equation of state p = wp is not the

only choice. EoS may be quadratic or other forms too.

In general p = f(p).




If we observe the technique of finding a solution of the
EFEs, we can see:
There are 3 variables a(t), p(t), p(t) that may take

any functional form. For example:

a(t) = Constant,a(t) = e*, a(t) = t", or any complicated function.
p(t) = Constant, p(t) = e*, p(t) = t", or any complicated function.
p(t) = Constant,p(t) = e*, p(t) = t", or any complicated function.
Or a relation between the variables e.g. p = f(p)

So, mathematically, we have choices to consider a
functional form of the variables (time t or redshift z) or
a relation between them. They may contain either one
or more arbitrary parameters «, 5, n,w etc.




Various functional forms of f(p) considered:

Pressure p(p), p(z)
plp) = wp (Perfect Hluid Eos)

plp) =wp— f(H) (Viscous Huid EoS)

p{pi = wp + kp't= (Polytropic gas EoS)

plp) = %% — 3p* (Vanderwaal gas EoS)

plp) = —(w + 1]% +wp + (w + 1)pa (EoS in quadratic form)

p(p) = —2 (Chaplygin gas EoS)

plp) = —P% (Generalized Chaplygin gas EoS)

plp) = Ap — Pﬁﬁ (Modified Chaplygin gas FoS)

plp) = Ap — %EEE ( Variable modified Chaplygin gas EoS)

plp) = Ala)p — J—l (New variable modified Chaplygin gas EoS)
)

= —p—p° {DE EoS)



With the linear form of EoS , different values
of the w describe different matter content in the
Universe other than radiation/ dust matter.

For example: For w = —1, it represents vacuum

1 :
energy, for w < — 2 (# —1), represents quintessence

and w < —1, represents phantom.
In the next section, we discuss these in relation to the
recent discovery of Late-time cosmic acceleration and

our motivation of (of this talk) COSMOLOGICAL
PARAMETRIZATION to solve EFEs.



DARK ENERGY

Before 1990’s, it was a common understanding that
the expansion of the Universe is slowing down due
to attractive gravity and theorists were working on
models of the Universe with decelerating expansion.
Moreover, solutions of standard model with normal
matter sources are found with a positive value of
deceleration parameter.

But, the observations on Type lIa supernovae

suggested accelerating expansion of the Universe.
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* This is the birth of a new phase of cosmological
studies and cosmologists started to think about
late-time cosmic acceleration with an earlier
phase of deceleration.

* This discovery of cosmic acceleration again
shook the foundation of general relativity.

* Later on the idea of cosmic acceleration
received more and more evidence by many other
observations as well as at theoretical ground.



* DE was supported by some independent
observations e.g. the BOOMERanG, Maxima,
CMBR, BAO, 2dF Galaxy Redshift Survey, DES
etc.

* Much more precise measurements from WMAP
have continued to support the SM and give more
accurate measurements of some cosmological
parameters.

* The idea of late-time cosmic acceleration is now
playing a major role in precision cosmology.



Now, the question arises, how to get accelerating

expanding solutions?
Within the background of GR, it is difficult to get
acceleration with normal matter source (p > 0,p > 0).

Two simplest ways are ™) Modifying the left hand
side of EFEs (Geometric modification) and inserting
additional term in the right hand side of EFEs with
high negative pressure (Physical modification).

These two modifications produced a plethora of
cosmological models in the past twenty five years
leading to accelerating expanding solutions.



However, these are not the only possibilities and is an
open__question till. One can deduce accelerating
solutions without any modification or incorporating
extra degrees of freedom too.

The simplest and most significant way to get
accelerating solutions is by incorporating the Einstein’s
cosmological constant in the RHS of EFEs but as a
negative matter source.

Einstein introduced cosmological constant (CC) into
field equations as he was convinced with static
Universe. The modifications of EFEs can be seen as:




Guv - 81-[6 Tuv Einstein’s original equation

Law of an All matter and energy in
expanding universe the universe
6 + Ag —_— 81-[ 6 , Einstein’s modified FE
Law of an Cosmological All matter and energy in
expanding universe constant the universe
Gy = 816G (T - PpeGuv)
Law of an All matter and energy in

expanding universe the universe



e The modified EFEs with CC can be written as

a\° 8mG¢ k A
Gy
a

a

3 a? 3
4t

A
=——3 (p+3p)+5  (7)

3

* For a dust (p = 0) dominated Universe in presence of
CC, Einstein’s static Universe corresponds to, p =

A k e 40 ° ° °
G a2 A. A must be positive since p > 0 lmplymgl for

a static universe k = +1 (closed) with a radius a = T




* Although, ACDM model is consistent with
observations, it suffers from the long standing
Cosmological Constant problem due to the non-
dynamical equation of state of A.

* The incorporation of DE resolved the problem of late-
time cosmic acceleration largely but a new problem
arose, “what is the suitable candidate of dark
energy?”, due to the non evolving nature of the
cosmological constant, which is plagued with fine
tuning problem.

* So, models with dynamical EoS are explored.




Possible Models of the Expanding Universe

* The data from the globular
cluster also reveals that the :
age of certain objects in the
Universe could be larger
than the present estimated :
age of the Universe in | i

older than a decelerating universe because it takes more time to
reach its present size, and expands forever. An accelerating universe

standard model  with s et et s i
normal matter.

* As of now, the only known
resolution of this puzzle is
provided by invoking the
concept of late-time cosmic
acceleration.

SCALE OF THE UNIVERSE




* Although, the nature of DE is unknown but it is generally
considered to be homogeneous and permeates all over space.
* The total energy budget in the Universe is estimated as:

B Dark Energy

l Dark Matter

B Free Hydrogen & Helium
O Stars

O Neutrinos

@ Heavy Elements




Dark Energy Modelling Beyond ACDM

* There were several attempts to solve the long
standing cosmological constant problem even
before the discovery of cosmic acceleration by
varying A.

* In this direction, authors have considered some
variation laws for the cosmological constant in the
past forty years, commonly known as “A-varying
cosmologies” or “Decaying vacuum cosmologies”.
Following is list of such decay laws of A.



A~a™™ A = A(T), T is Temperature

A~H" A = 3BH?

A~ A =3BH* + aa™*

A~q" A=p

A~p a "

A~e_ﬁa A= 3ﬁH2 + (XE

A~C + ePt dA ,
——=BA-A

Here, a, B, n, C are constants.



The problem can also be alleviated with a dynamically
evolving scalar field.

Dynamically decaying A, vacuum energy have also
been used to explain late-time cosmic acceleration.

A variety of scalar field models have been proposed to
describe the late-time cosmic acceleration including
quintessence, phantoms, K-essence, Tachyon scalar
fields and some more.

Some other DE models with scalar field are
Chameleons, Galileons, Holographic scalar field and
non-minimally coupled scalar field.




* A quite different approach for the description of
cosmic acceleration is to consider the Chaplygin gas
EoS (and its modifications), Polytropic gas EoS,
Vander wall’s fluid and bulk viscous fluid.

« However, the search for suitable candidate of dark
energy is still an open question.

* Here, we shall discuss the theoretical approach to some
dark energy models in classical general relativity and
also discuss the reconstructions of these models with

cosmological parametrization.



Scalar Field Model of dark Energy

There are observations which constrain the value of EoS
parameter w today refers towards the time evolution of w.
The DE may be represented as a standard scalar field
¢ minimally coupled to gravity with Lagrangian,

1
L =203, — V() (10)

The stress energy-tensor take the form of a perfect fluid
represented by

Tﬁv — (qu qu)Uquguv (11)




where py, = 2~ V(¢), py = L + V().

2 ,
[ J [ J p¢ _1+§_V [ ] [ J
The equation of state is then w; = PO which gives
¢ 1+
2V

rise to different candidates of scalar field dark energy
depending upon the potential V' (¢) of the field ¢. For
slow roll scalar field (potential dominated) i.e. V(¢) >
P2, wys = —1 and act like a cosmological constant.

With this set up the EFEs with scalar field in FLRW
background yields the following field equations



Friedmann equation

HE = —(p + py) (12)
3M2 ()

And the evolution of the scalar field is governed by the
wave equation

. . dV(¢)
+ 3Hp - =0 13
b+3H$ +—7 (13)
Where, M, = (8G)~"/*. With this basic set up, we can
explore the physical nature and geometrical behaviour of

the Universe with certain constraints.




In the current cosmology, it is a common trend for the
theoreticians to construct models of the Universe with this
basic set up and with certain physical assumptions that solve
the system explicitly and cosmic history can be studied from
the beginning to present phase of the Universe and
eventually the fate. On the contrary, the dynamical system
approach can also be used to explore without finding the
exact solutions.

I am interested in finding the exact solutions to field
equations in a model independent way or the cosmological
parametrization and study the various phases of Universe to
discuss various phenomena with observation.




COSMOLOGICAL PARAMETERS

Einstein Field Equations is generally characterized by the
following basic parameters.

Geometrical Parameters | Definition | Physical Parameters | Definition
Scale factor a Energy density p
Hubble parameter H Pressure p
Deceleration parameter q EoS parameter w
Physical Parameters with DE Definition Some other parameters are
) Density parameter ({2), Shear
Cosmological Constant A ( o ) for anisotropic
Scalar field ¢ background, scalar expansion
(0), jerk parameter (j) and so
Scalar field potential V on.




COSMOLOGICAL PARAMETRIZATION

We have already mentioned earlier, in FLRW cosmology,
EFE contains three variables a(t), p(t), p(t) with two
independent equations that can be solved by supplementing
the EoS and system becomes more complicated with the
addition of an extra degree of freedom (DE).

In literature, there are several physical arguments to
consider a functional form (parametrization) of any
cosmological parameter (a, H,q,j, p,p,w, ) etc.) with
some free parameters generally termed as model
parameters that can be constrained through any
observational datasets.



If we examine closely, we might remark that the primary
type of parametrization of geometrical parameters is
studied to produce exact solutions that address the
expanding dynamics of the universe and give the time
evolution of the physical parameters p, p, or w. The
second type of parametrization of physical parameters is
commonly used to explain physical features of the
universe.

The model-independent way approach has the potential of
rebuilding the cosmic history of the universe as well as
interpreting some of the universe’s phenomena without
affecting the background theory.



This model-independent study of cosmological models
termed as COSMOLOGICAL PARAMETRIZATION.
Furthermore, this strategy gives the easiest way to
theoretically overcome several problems of standard
model, including the initial singularity problem,
cosmological constant problem, etc. and also the
Hubble tension.

In the following, I have summarized these cosmological
parametrizations used in the past 20-40 years in some
detail.




Scale factor a(t)

a(t) = constant (Static model)

a(t) = ct (Milne model or Linear expansion)

a(t) ~ exp(Hgt) (ACDM model or Exponential expansion)

a(t) ~ exp [—ﬂrt In (i) + ,St] (Inflationary model)

g
a(t) ~ exp [—at — Ft"] (Inflationary model)
a(t) ~ [explat) — Fexp(—at)]” (Inflationary model)
a(t) ~ exp {%} [1 4+ cos (%1)] (quasi steady state cosmology, Cyclic Universe)

a(t) ~ t* (Power law Cosmology)
a(t) ~ t" exp(at) (Hybrid expansion)
a(t) ~ exp [n(logt}™] (Logamediate expansion)
a(t) ~ cosh at {Hyperbolic expansion)
i
a(t) ~ (sinh at)™ (Hyperbolic expansion)
a(t) ~ (:,‘_:J (Singular model)
a(t) ~ t"exp [x(t, — t)] (Singular model)

a(t) ~ exp (ﬂr%z-) { Bouncing Model)
a(t) ~ exp (nf_l (t — :_':3}‘:"'"1) (Bouncing Model)
a(t) ~ (Spt? + '1:]-?:'r (Bouncing Model)

a(t) ~ (*-—*) (Bouncing Model)

L

a(t) ~ sinZ (aﬁ) (Bouncing Model)



Hubble parameter H (t) or H(a) Deceleration parameter g(t) or q(a), q()
H(a) = Da™™

1—a? q{t} =m — 1
H(a) = e =a . g(t) = —at+m —1
H{ﬂ}_: ﬂml +a™") q(t) = cvcos(Ft) — 1
H(t) = at+j (t) = _ ot
H(t) = mrsaeq T o
H(t) =m+ 3 q(t) = ——
H() = iny q(t) =~ + 5 —1
H(t) = %{:+Tn]3 — 3 (t + Tp) g(t) = (8n2 — 1] — 120t + 342
H(t) = aet o™
HH = a+ Blts —t)" qg(a) = -1 - 175
H(t) = a— fge™ q(z) =qo +q12
H(t) = fi(t) + fa(t)(ts — 1)" g(z) =qo+qiz(1+2)7!
H(t) = i q(2) = go +q12(1 + 2)(1 + 2°) 7"
H(t) = natanh(m — nt) + 3 q(z) = % +g.(1+ E]—E
H(t) = atanh (%) ) q(z) =qo+q1[1 +In(1 + 2)]1
H(z) = [a+(1-a)(1+2)"])7 q(2) = 5+ (@12 + g2) (1 + 2) 7



_ 3 (14z)92
q(z) = —1+3 (q1+{1+z]|?2)
gqred2(1+z) _g—gqz(1+=)

q[:&} = —% [31‘.]‘1 +1-— 3{@'1 + l} (qlfq3[1+:]+f—qg{l+r})i|

g2 ———  —q2
L J1 € Vidtz g W 14z
Q(E} - _E + 3 (q R 1‘,1_—‘,__'_E_—I'1’2J1—)
q(2) = qf + ——L—
(52
((1+z) =—1
() = g0 — a1 (=1
[ In(a+ |
q(z) = g0 + q % —

q(2) =qo — (g0 — q1)(1 + z) exp |27 — (2 + 2c)°]

Jerk parameter j(z)
j{E] = —1 —|'j]_—|:—:|— where f{;_::] — =z = {1+3 B lﬂg{ ] and E{E] — HH[jg
Hi

E=(z) ' 142!
j{ ]: _1+jlh2[{3}]-.- where f(E} — 15 ]-‘|_34_. (1 +E} . '[1 + :]_1 and h{z] =

z)
0




Pressure p(p), p(z)
plp) = wp (Perfect finid EoS)

:a-+,ﬂ( = ) (DE EoS)
= o+ Sln(l + z) (DE EoS)

plp) =wp — f(H) (Viscous Hluid EoS)
p(p) = wp + kp't= (Polytropic gas EoS)
plp) = g—t_”f'; — 3p® (Vanderwaal gas EoS)
plp) = —(w + 1]45 +wp+ (w+ 1)pa (EoS in quadratic form)
p(p) = —% (Chaplygin gas EoS)
plp) = _PE'* (Generalized Chaplygin gas EoS)
plp) = Ap — PE'* (Modified Chaplygin gas EoS)
plp) = Ap — EP':EE (Variable modified Chaplygin gas EoS)
plp) = Ala)p — —"r-—:'— (New variable modified Chaplygin gas EoS)
plp) = —p—p° {DE EoS)
plz) = a+ ,3:5 [DE EoS)
plz) = 515 (DE EoS)
(2)
(2)



Equation of state parameter wi(z)

w(z) = wp + uwy 2z (Linear parametrization)
wiz) = wo + wll:l—_fzjg (JBP parametrization)

w(z) = wo + wlw (Generalized JBFP parametrization)

wiz) = wg + wy—— (CPL parametrization)

w(z) = wo + un (m) (Generalized CPL parametrization)
w(z) = wo + un 1.;“13?5 (Square-root parametrization)

w(z) = wp + wy sin(z) (Sine parametrization)

w(z) = wy + wy In(1 + z) (Logarithmic parametrization)
wz) = wy 4+ wy In (1 + H_z) (Logarithmic parametrization)
wiz) = wo + un z—l"r%ﬁ—]— (BA parametrization)

w(z) = wo + un (Eﬁ_%l — 1112) (MZ parametrization)

w(z) = wg + un Einl{:__;z] — =in 1) (MZ parametrization)

w(z) = wg + wy -z (FSLL parametrization)

w(z) = wo + wll—_‘i,g (F'SLL parametrization)

w(z) = —1+ '14":?'3 Fr+2ac::_1l_—|z—f}||:-l|-_.;ﬂ+ 7= (ASSS parametrization)
1+ =\

w(z) = -w.;|+-w1|: ';, i (Hannestad Mortsell parametrization)

w(z) = —1 4+ a(l + 2) + (1 + 2)? (Polynomial parametrization)
w(z) =—1+all+ flz)] +5[1+ fi(2)]? (Generalized Polynomial parametrization)



w(z) = wo + 2 (2),
_ _ —2(14z)d; —3d,
w(z) = E[JL—HM{I+3]9[:£L;|

wela) = wpexpla—1)

wela) =wya(l — loga)

we(a) = wpaexp(l —a)

wy(a) = wya(l + sin(1 — a))
we(a) = wpa(l + arcsm(1l — a))
wdel:g} = Wy + uh g

Wie(2) = wo + wrg(l 4+ 2)°
wdel:g} - —

[1+bIn(14z2)]"

w,(z) = wo + b {1 — cos [In(1 + 2)]}
wq(2) = wy + bsin [In(1 + 2)]

welz) =wo +b [M — sin 1]

14=

we(z) = wu—|—b(1+z)n:{:-5{1 + z)
w(z) = wy + w, |22 lnE]

14z
[In(a4+14z) ln{a+l}]

w(z) = wy + wy e

&
¢
5] where d. = | 74—

Energy density p

A
[t ()
(%) =5
aH|(z)

aH(z) + BH2(z f
= % o+ BH?(2)

a + EEH z}]
aHE[g} + EﬁH{g;.]
o+ BH2(2) + ETH{EJI

s0(1+ 2)% b=



Scalar field Potentials V () Cosmological constant (A)

Vig) = Vyod™ (Power law) Ar~am
, T . J"!L (Y H“
Vig)= Tf“he::p [_Hf_;] (exponential ) A~ p
VI®) = =emeran At
V($) = Vo [cosh (ag /M) 7 (hyperbolic) A~ .
Vig) = EE% (Inverse power law) i o~ i{T} -
o Vi . - = Al ) 1 15 lemperature
Vip) = e EIP*E_M 7 {‘jﬂﬂds—ﬂaxun potential) A~ O o Bt
: ' _ 2 2
V(o) = ac? [ta:nh T,_'Iﬂ'—ul (@-attractor) i = .';gH + aa
V(6) = Vo(l + 6)’ =65
V()= L’;]E}Epl::&'qizjl J:-.-Lz 38H= + *:E
V(g) = 3(¢* —1)? T~ AA—A

Note: All the parametrization listed above contain some arbitrary constants such as o, 5, v, m, n, p. go, 1, gz,
wq, wy. A, B are model parameters which are generally constrained through observational datasets or through any
analytical methods and also some arbitrary functions fy(t), f2(t). t: denote the bouncing time or future singularity
time and f, some arbitrary time.



EXEMPLIFICATION

FIELD EQUATIONS WITH QUINTESSENCE

/d{mf( M7 R+ Ly + Ly )

1 .
H-,r_w — _ERQ,U_LJ — JI_ETS;FMEa where Tif"fﬂf TF:IT*{ _I_T.tﬁ*’

P | a9 [y . e f
T;”'” = Jy 00,0 — Eg,w (00)” — gV (9), Here__ {Cf{f}jlg — gﬂ.l._-]fjﬂ I::*C-]&{I}

ds® = —dt* + a*(t) :dri + (dﬁg + sin” de;':ng)] ._



a

oy 2 " 2
. _ (1
ﬂ*irf:fpj‘ﬂmg =3 (g) = BHE: ﬂ“jrpfpi"ﬂmf — _QE — (—) — (Qq — UHE.

(1

PTotal = Peff = P+ Po and Protal = Pesf = P + Do

b = %ri}z +V(9), py = %.;f,.ﬂ V(@)_ oy — P2 59° — V(o)

Pe 22+ V(p)



SOLUTION OF FE IN A MODEL-INDEPENDENT WAY

Taylor series expansion of a(t) i the vicinity of the present
time t = to iS,

| a aa
Wy Holt—to] - LH P4, HO=7 0= 5
a (to) 2

a(t) = Cel “J'ﬁ_._ where C' 1s a constant of itegration.

(t) = —1 + da/ 1 Various other relations can also be established
= among these cosmological parameters.




Hubble parameter Deceleration parameter

-

1 da ld°a|ldal”
= +—— )= ———7"5 | ==
Hir) +|:Id!' q) adr- |a dt
Jerk parameter snap parameter
3 —3
() = +ld_? 1@ 1 [f'lﬂ 1 da 4
a dr” | a dt i) =4+——— | ————
adr* |adt
Lerk parameter
iy = L1 d°a|1da -
- adf |adt

Gt

Motivated by the discussion, we H (f) _ i
consider the parametrization of H as T P
(1" + )




where a,3 # 0,m,n,p are real constants (better call them model parameters).
o and 3 both have the dimensions of time. The specific values of m, n, p will suggest
the different forms of HP and produce interesting cosmologies. Our parametrization
generalizes several known models which were obtained by the parametrization of
any cosmological parameters a(t), H(t),q(t), A(t), p(t) or w(t) in different contexts.

* This one parametrization covers many models obtained in the past
few decades 1n different schemes of parametrization under one
umbrella.

* This stmple modification 1n the functional form of HP can give rise to
interesting cosmological phenomena such as big rip singularity,
bounce and others. Few models admit transition from deceleration to
acceleration as suggested by some observations.



Models Specific values of HP SF DP
m,n,p H(t) a(t) a(#)
I m=0,p=0,Vn I6] CePt —1
11 m=—1,p=0,¥n = CtP —1+ %
I11 m=0,p=1n=1 - C(t 4+ a)P —1+ %
-
IV m=1,p=0,Vn Bt CePz —1_%?{:—
; ] |
V m=0,p=1,n=2 ?Ei_ﬂ CeVe 2 —1—|—%t
U _ 1 _ B 28T 1 1
Vi m=0p=3n=1 V= v 1+ 55 A
; — p— l — —-—B A 2 "3 _ l—t
VIl | m—tp-ta=i | g |OoPGia | 1og)
IX m=1,p=1n=2 ?-'Ei_ﬂ C(t? 4+ a)z _1+%_%?12'
r — _ 1 _ Bt By 124 e - 1
X m=1,p=35,n=2 o Ce 1 P T
X1 m=—1,p=1n= Hfi—&j C{tiﬂ)“ —1—|—%—I—%t
o — _ _ 3 _ 4 342
XII m=—1,p=1,n = o) Clm— )E& 1+§+6t
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For negative @ and 8, two models show Models| H(t) alt) _ a(t)
oge ) k2 | t R k2
DEC-ACC phase transition and the HP can | ™! |75 |° (5) i el il
be expressed in terms of redshift as M2 || () T | R - A
f————— . , T 7
{ky, K, B} ‘F I I 1ky, ks, 5) : : Pl
| (3,05 10 ! | ] | {30510 ] | i |
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In order to understand the late time behavior of the Universe, it is convenient to
express all the cosmological parameters in terms of redshift. (Redshift may be
characterized by the relative difference between the observed and emitted wavelengths

Anow Anow Qo

of an object and is related to scale factor by, 1 + z = = = —,
Athen Athen a

The t — z relationship can be established for the discussed models M1 and M2
respectively as,

b=

ey 7 —1 .
t(z) =k [1+{BA+2)}7] | and t(2) = VEi [T+ {B(1+2))"%
Now, the models M1 and M2 are described as,

H(z)=Ho(1+ 8% (14214 {8010+2)}"T" Model M1

B3| e

H(z) = Hp (1 + _,-:%?“)_% (14 z)2¢ [1 +{B(1+ ::':}}Eﬁ} Model M2

The two models can now be compared with some observational datasets. Also, the
model parameters a & f are to be estimated through datasets.




Three datasets are considered here, namely Hubble datasets (/z), Type 1a supernovae
datasets (S/V) and Baryon Acoustic Oscillations datasets (B40). Using some statistical
techniques, the model parameters a & f are estimated as follows,

Table-4: Constrained values of model parameters and chi square values

Datasets Models| « 5 Xﬁ 2 /dof
H(2) M1| ||1.58064||1.48729||[31.329529| (0.56962
M2| ||1.31611||1.56124([29.972660| [0.54495
H(z)+ SN M1| ||1.60094(1.44572||596.49325| [0.93935
M2| ||1.32551]||1.53587||595.02853| [0.93705
SN + BAO M1| ||1.61116])1.36647|||564.45777| [0.96653
M2| ||1.45677|||1.36451]||566.44641| |0.96994
H(z)+ SN + BAO M1| ||1.59173|||1.45678]||599.07805| [0.93459
M2| ||1.428209](/1.40637|/614.40132| [0.95850

Using these values, we can see the fitting of our
models M1 and M2 with the datasets and compare
with the standard ACDM model.




The maximum likelihood contours for the model parameters ¢ & f are shown in the
following figures for independent Hz datasets and combined Hz+SN, SN+BAO and
H7+SN+BAO datasets respectively with 10,20 and 30 error contours in the a — 8 plane.
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il

— Hz

Hr+ 5N
— EN+BAD
— Hr+5N+BAOD

The evolution of the deceleration parameter can be
seen from the following figure with the numerical
values of the mode parameters for both the models.

Table-5: Values of g at different epochs & phase transition redshift for model M1

3 4

redshift formula Hz |Hz+SN|SN+BAO|Hz+ 5N+ BAO
7 — 00 (qi) G =-1+a 0.58064 | 0.60094 | 0.61116 0.59173
72— 0 {qg) p=-1+a- %E\E —0.51977| -0.54087| —0.60308 —(.53714
7 — -1 [qf} qf = —1 -« —2.58064|-2.60094| —2.61116 —2.59173
e (@=0) |z =—-1473 ( gﬂ)a 0.72763 | 0.72730 | 0.80236 0.73622

— Hz

Hz+5N
— SN:BAD
— Hr+SN+BADQ

Table-6: Values of q at different epochs & phase transition redshift for model M2

redshift formula Hz |Hz+SN|SN+ BAO|Hz+ SN + BAO
?—00(q) |a=-1+a 0.31611 | 0.32551 | 0.45677 0.42829
2—0(q) |p=-1+a—5m |-0.61721|—-0.63087| —0.80152 |  —0.74601
2 — -1 (gp)|gg=-1-20 ~3.63222|-3.65102| —3.01354 |  —3.85658
% (@=0) |zp=-1+3 (%)T 0.61041 | 0.62055 | 0.53182 0.53471




Statefinder diagnostics and Om diagnostic analysis are used to distinguish various dark energy
models. The following plots show a comparison of our models with some standard models.
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Finally, one can calculate the physical parameters (pg, V(¢), wy, Q) for the considered

models M1 and M2. The behavior is shown in the following figures.
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The age of the Universe in both the models is calculated and shown in the following table.

Table-7
Models M1 M2
Datasets (v, 3) Factor |Age (in Gyr) (v, 3) Factor |Age (in Gyr)
H=z (1.58064, 1.48729)(0.97046 14.0068 (1.31611, 1.56124)(0.99502 14.3613
Hz+ SN (1.60094,1.44572)|0.97084 14.0123 (1.32551, 1.53587)(0.99630 14.3797
SN + BAO (1.61116, 1.36647)|0.99597 14.3751 (1.45677,1.36451)(0.96400 13.9136
Hz4+ SN + BAO|(1.59173,1.45678)10.97343 14.0496 (1.42829.1.40637)|0.96445 13.9201

Recently, we have discussed this model with improved datasets such as
Pantheon, updated BAO and CMB datasets and the results are improved.

Using the constrained values of the model parameters, we have extended the
analysis in modified f(Q,T) gravity and performed some more cosmological

tests.
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MCMC Results

Model Parameters| Bestfit ﬁlr'rlr‘.'LlLl-E

ACDM Model]  Hy  |60.8548487 =ood]
Model 1 H,  |60.302413F0305T]
o ,]rl} 1 Eﬁgmggﬂuﬂqlﬁﬁg

¢ | Lot
Model 2 H, 60247091 F0-85220]
qﬂ 1.35ﬂ357fﬁq§1%%§9

. 14592037 g3,

TABLE I. Best fit values of the model parameters




Comparison with the Hubble data points Comparison with the Pantheon data
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FIG. 16. This figure shows {g, v} plots for models 1.
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COSMIC EVOLUTION OF PHYSICAL PARAMETERS FOR QUINTESSENCE AS A 50URCE

OF DE
B L o s e e o L s e e e ||I ------
|
-u:'l 1]
ey
-10} I|
-I1 0 1 :!- 4 5

AT
ST —
u 1
¥ .5
L | T
= x
g =10 ,
=15} { 1 _15l — G000 \\
' —— omemam N i
20Ls [ . o . . R PR ;
- _In " " L] " " L " "
F4

4

FIG. 23. Profile of energy density for model 2. FIG. 24. Profile of dark energy pressure for model 2 FIG. 26. Profile of dark energy equation of state (EoS) for model 2
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KINEMATIC TESTS

A. Lookback Time

B. Proper Distance
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MODIFIED GRAVITY

Physical dynamics of dark energy models resulting from a parametrization of H in

f(Q,T) gravity

1 4 . 2 ov/—9gLn) 5T
S = — ' W —qa T _E,,u_— B« Y ox [
5 ./ {]ﬁ‘ﬂ' I(Q‘J T] -l_ 'I:ﬂ-{f] yﬁ, L f H rjlqr__:_y E}Ir!l-' .'? o

ﬁgﬁ“
Q — _.qﬂ” [L{ﬂi';r.bffrr - ﬁfrbﬂuj '3}-!2 8 T [1 —l— l‘-r-'_‘-r'} _I_ ('_'r ]
, — = —— — T | [}
where TPeff 4F F f P
1
L, = =59 (V49px + Vgry — Vagpy) ¢t oFH
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for M1
W= — [((1 + z]ﬁ}” (8?1'{3 — 2a) 4+ 3(1 — ﬂr])+

(S?T[E + 2ar) + 3v(1 + tt))]f[(?ﬁlﬂ' + 3 — ::w)
+ ((1+2)8)" (24?1’ + 3v + tw)]
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F1G. 2: Eguation of state parameter for model M1

for M2

W= — [((1 +2)8)™ (ﬁw[ﬂ — 2a) +3v(1 - ﬂf})+

(8?1’[3 +4a) + 3v(1+ a))] / (mﬂ + 30— 2.-11,—]
+((1+ 3]3)2[1(24w + 3v + ﬂmx)]

05 ———m——m——————
DD .-"F-Fd-"- ———
[ o
-05 ’
— -10
- Phantom divide line
3 .
-1.5¢
S
_E'D:_ ; — =10
250 v meeee v=100
a
" i . | " 1 " Ls o o o B o o
-1 2 3 4 L

I'IGs. 3: Eqguation of state parameter for model M2



(Geometrical Parameters
Parameters at z =0 Model M1 |Model M2
Deceleration parameter (go)| -0.5372 -0.7462
Jerk parameter (jp) 1.1996 2.8025
Snap parameter (sg) 1.4032 8.6445
Lerk parameter (Ip) 38.9871 48.3503

TABLE I: Cosmographic parameters at z = ()

IFI(s. 12: Energy conditions in terms of redshift for
model M2



FIG. 7: SEC: variation in v
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Thus, one can obtain exact solutions to Einstein
field equations using the concept of cosmological
parametrization (a detailed list have been provided
here) for any choice of dark energy to explain the
cosmic acceleration as well as to alleviate some
standard problems of GR.

The cosmological dynamics can be described for the
reconstructed models and the model parameters
(and also the integrating constants) are to be
constrained through observational datasets.







