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BOUNDARY PROBLEM IN (SU)GRA

Gravity and supergravity Lagrangians in the presence of a boundary studied from the early seventies on...

• York-Gibbons-Hawking (1972, 1977): Need of adding a boundary term to the gravity action such as to
implement Dirichlet boundary conditions for the metric field in early attempts to study the quantization of
gravity with a path integral approach

• Horava-Witten (1996): Addition of boundary terms considered to cancel gauge and gravitational anomalies
in the Horava-Witten model in 11D

• AdS/CFT (1997): Bulk fields (metric) diverge at ∂M→ Cured by inclusion of counterterms at the boundary
(Holographic renormalization)

General lesson: For ∂M 6= 0, the bulk theory needs to be supplemented by boundary terms



OVERVIEW

+ Gravity case in the geometric (Cartan) approach

+ (Super)group-manifold approach to (super)gravity [key aspects]

+ Geometric construction of pure D = 4 SUGRA with negative cosmological constant in four dimensions in
the presence of a non-trivial spacetime boundary [N = 1]

L. Andrianopoli, R. D’Auria, 1405.2010

+ Case of vanishing cosmological constant (“flat” SUGRA, no explicit internal scale in the Lagrangian)

P. Concha, L. R., E. Rodrı́guez, 1809.07871

+ Application to specific problems in cases where the boundary is located asymptotically + Open directions



GEOMETRIC (CARTAN) APPROACH AT THE GRAVITY LEVEL

Aros, Contreras, Olea, Troncoso, Zanelli (1999); Olea (2005): Diffeomorphism invariance of the bulk Einstein
Lagrangian + cosmological constant Λ is broken in the presence of a boundary

⇒ Restored by adding a topological term (Euler-Gauss-Bonnet):

LEGB = Rab ∧Rcd εabcd = d
(
ωab ∧Rcd + ωa

` ∧ ω`b ∧ ωcd
)
εabcd

⇒ Background-independent definition of Noether charges, without the need of explicitly imposing Dirichlet
boundary conditions on the fields

The expansion of LEGB in the radial coordinate ⊥ to the boundary

• Regularizes action and the related (background-independent) conserved charges

• Reproduces holographic renormalization counterterms



DIFFERENTIAL FORMS, LIE (SUPER)ALGEBRAS AND MAURER-CARTAN EQUATIONS

Lie superalgebra

[TA,TB} = C C
AB TC

TA: Generators in the adjoint

representation of the Lie group

Dual formulation
−→

σA(TB) = δA
B

σ
A: Differential 1-forms

Maurer-Cartan equations

RA ≡ dσA +
1
2

C A
BC σB ∧ σC = 0

d 2 = 0↔ Jacobi identities

• RA are the supercurvatures (super field strengths), building blocks of sugra in the geometric framework

• The Maurer-Cartan equations RA = 0 define the vacuum of a SUGRA theory

• Geometric formulation in superspace, spanned by the supervielbein {V a,Ψ} (dual to Pa, Q)



GEOMETRIC APPROACH TO SUGRA IN SUPERSPACE

• Geometric (rheonomic) approach to SUGRA in superspace

• Superfields µA(x , θ), supercurvatures RA; θ spinorial anticommuting coordinates→ Restriction to
spacetime: θ = dθ = 0

• Superspace basis: {V a, ψ} (supervielbein)

• In principle: Extra dynamical info. in superspace⇒ Constraints to have same dynamical info. we have on
spacetime (“rheonomic constraints” on the parametrization of the supercurvatures)

⇒ Bianchi identities become relations among the superfields and their curvatures (satisfied on-shell)

Realized by requiring the supercurvatures (defined off-shell) to be identified on-shell as particular 2-forms in
superspace: Parametrization on a basis of 2-forms in superspace, det. by requiring the “Bianchi relations” to
be satisfied

RA = RA
abV a ∧ V b + RA

aαV a ∧ ψα + RA
αβψ

α ∧ ψβ

RA
ab inner components, RA

aα and RA
αβ outer components

Bianchi→ Outer as linear tensor comb. of inner (constraints, phys. equiv. to on-shell ones)⇒ No extra d.o.f.

• SUSY tr. of the fields on spacetime corresponds to diffeo. in the fermionic (θ) directions of superspace→
Lie derivatives in those directions



GEOMETRIC APPROACH TO SUGRA IN SUPERSPACE

• Geometric (rheonomic) approach to SUGRA in superspace

• Superfields µA(x , θ), supercurvatures RA; θ spinorial anticommuting coordinates→ Restriction to
spacetime: θ = dθ = 0

• Superspace basis: {V a, ψ} (supervielbein)

• In principle: Extra dynamical info. in superspace⇒ Constraints to have same dynamical info. we have on
spacetime (“rheonomic constraints” on the parametrization of the supercurvatures)

⇒ Bianchi identities become relations among the superfields and their curvatures (satisfied on-shell)

Realized by requiring the supercurvatures (defined off-shell) to be identified on-shell as particular 2-forms in
superspace: Parametrization on a basis of 2-forms in superspace, det. by requiring the “Bianchi relations” to
be satisfied

RA = RA
abV a ∧ V b + RA

aαV a ∧ ψα + RA
αβψ

α ∧ ψβ

RA
ab inner components, RA

aα and RA
αβ outer components

Bianchi→ Outer as linear tensor comb. of inner (constraints, phys. equiv. to on-shell ones)⇒ No extra d.o.f.

• SUSY tr. of the fields on spacetime corresponds to diffeo. in the fermionic (θ) directions of superspace→
Lie derivatives in those directions



GEOMETRIC APPROACH TO SUGRA IN SUPERSPACE

• Geometric (rheonomic) approach to SUGRA in superspace

• Superfields µA(x , θ), supercurvatures RA; θ spinorial anticommuting coordinates→ Restriction to
spacetime: θ = dθ = 0

• Superspace basis: {V a, ψ} (supervielbein)

• In principle: Extra dynamical info. in superspace⇒ Constraints to have same dynamical info. we have on
spacetime (“rheonomic constraints” on the parametrization of the supercurvatures)

⇒ Bianchi identities become relations among the superfields and their curvatures (satisfied on-shell)

Realized by requiring the supercurvatures (defined off-shell) to be identified on-shell as particular 2-forms in
superspace: Parametrization on a basis of 2-forms in superspace, det. by requiring the “Bianchi relations” to
be satisfied

RA = RA
abV a ∧ V b + RA

aαV a ∧ ψα + RA
αβψ

α ∧ ψβ

RA
ab inner components, RA

aα and RA
αβ outer components

Bianchi→ Outer as linear tensor comb. of inner (constraints, phys. equiv. to on-shell ones)⇒ No extra d.o.f.

• SUSY tr. of the fields on spacetime corresponds to diffeo. in the fermionic (θ) directions of superspace→
Lie derivatives in those directions



SUPERGRAVITY CASE AND THE GEOMETRIC SUPERSPACE APPROACH

Boundary problem considered from several authors, different approaches

Point of contact: To restore all the invariances of a SU(GRA) Lagrangian with Λ, add topological contributions

A systematic way to face the boundary problem in SUGRA:

Geometric approach to SUGRA in superspace

• The theory is given in terms of superfields 1-forms µA defined on superspaceM4|4N (4 spacetime dims.)

• The Lagrangian, L[µA], is a bosonic 4-form in superspace and the action is obtained by integrating L on a
generic bosonic hypersurfaceM4(x , θ) ⊂M4|4N immersed in superspace

S =

∫
M4

L[µA]

• SUSY transformations in spacetime are diffeomorphisms in the fermionic (θ) directions of superspace:

SUSY: M4(x , θ)→M4(x , δθ)

⇒ Can be described in terms of Lie derivatives `ε with fermionic parameter ε(x , θ) (SUSY parameter)

`ε = ıεd + dıε , ıε : contraction operator ıε
(
V a) = 0 , ıε (ψ) = ε



SUGRA theory→ Invariance of the action under SUSY transformations: δεS ≡
∫
M4

δεL = 0

• Condition for the superspace Lagrangian to be invariant under local SUSY:

δεL = `εL = ıε(dL) + d(ıεL) = 0

⇒ Necessary condition for a SUSY-invariant SUGRA Lagrangian:

ıε(dL) = 0

Corresponding to requiring SUSY invariance in the bulk of superspace
→ Assumed true from now on, the Lagrangian satisfying it: Bulk-supergravity Lagrangians, Lbulk

• SUSY invariance of the action then requires the weaker condition on the bulk Lagrangian

δεS =

∫
M4

d(ıεLbulk) =

∫
∂M4

ıεLbulk = 0 ⇒ ıεLbulk|∂M4 = dφ

In general not satisfied by Lbulk in the presence of non-trivial boundary conditions on ∂M4 6= 0
⇒ SUSY invariance requires to add boundary terms→ Consider the full Lagrangian

Lfull = Lbulk + Lbdy , Lbdy = dB(3) ⇒ ıε(dLfull) = 0 and ıεLfull|∂M4 = 0
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PURE N = 1, D = 4 SUGRA WITH NEGATIVE COSMOLOGICAL CONSTANT

• Fields: V a (a = 0, 1, 2, 3), spin connection ωab , gravitino ψα (Majorana spinor, α = 1, 2, 3, 4)

• Lorentz-covariant supercurvatures:

Rab ≡ dωab + ωa
c ∧ ωcb

Ra ≡ DV a −
i
2
ψ̄γa ∧ ψ = dV a + ωa

b ∧ V b −
i
2
ψ̄γa ∧ ψ

ρ ≡ Dψ = dψ +
1
4
ωabγab ∧ ψ

• Bulk Lagrangian of pure N = 1, D = 4 SUGRA in superspace, whose e.o.m. admit an AdS4 vacuum
solution with cosmological constant Λ = −3/`2:

LN=1
bulk =

1
4
RabV cV d εabcd − ψ̄γ5γaρV a −

i
2`
ψ̄γ5γabψV aV b −

1
8`2

V aV bV cV d εabcd

• Invariant (in the bulk) under SUSY:
ıε(dLN=1

bulk ) = 0



When the background spacetime has a non-trivial boundary:

ıεLN=1
bulk |∂M4 6= dϕ ⇒ δεSbulk 6= 0

• To restore SUSY invariance: Add boundary terms LN=1
bdy = dB(3) to the superspace Lagrangian which do

not alter dLN=1
bulk so that still ıε(dLN=1

full ) = 0

• Possible boundary terms:

d
(
ωab ∧Rcd + ωa

` ∧ ω`b ∧ ωcd
)
εabcd = Rab ∧Rcd εabcd

d
(
ψ̄ ∧ γ5ρ

)
= ρ̄ ∧ γ5ρ−

1
4
Rab ∧ ψ̄γ5γab ∧ ψ

• Therefore consider the boundary Lagrangian

LN=1
bdy = αRabRcd εabcd − iβ

(
ρ̄γ5ρ−

1
4
Rabψ̄γ5γabψ

)
• Modify the Lagrangian→ Full Lagrangian:

LN=1
bulk → LN=1

full ≡ LN=1
bulk + LN=1

bdy



• Consider the boundary contributions in the field eqs. from LN=1
full

⇒ Constraints on the supercurvatures to hold on the boundary:
δLN=1

full

δωab
= 0 ⇒ Rab|∂M4 = −

1
8α

(
V aV b +

1
2
βψ̄γabψ

)
∂M4

δLN=1
full

δψ
= 0 ⇒ ρ|∂M4 =

i
2β

(
γaψV a)

∂M4

Rab , ρ on ∂M4 dynamically fixed to const. values in the anholonomic basis of the bos. and ferm. vielbeins

• Impose SUSY invariance→ Using the above eqs. we find:

ıε(LN=1
full )|∂M = 0 ⇔

β

16α
−

1
2β

= −
1
`

→ Can be solved in terms of the real parameter k 6= −1:

α = −
1
8

`2

1− k2
, β =

`

1− k

that is 
Rab|∂M4 =

[
1− k2

`2
V aV b +

1 + k
2`

ψ̄γabψ

]
∂M4

ρ|∂M4 =
i(1− k)

2`

[
γaψV a]

∂M4
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• Setting k = 0, which implies α = −`2/8 and β = `, LN=1
full takes the form

LN=1
full = −

`2

8
Rab ∧ Rcd εabcd − i`ρ̄γ5 ∧ ρ

in terms of the OSp(1|4)-covariant supercurvatures

Rab ≡ Rab −
1
`2

V aV b −
1
2`
ψ̄γabψ

ρ ≡ ρ−
i

2`
γaψV a

Ra ≡ Ra

LN=1
full above is in fact nothing but the MacDowell-Mansouri Lagrangian

• The constraints coming from the boundary contributions to the field eqs. take the simple form (for k = 0)

Rab|∂M4 = 0 , ρ|∂M4 = 0 , Ra|∂M4 = 0

⇒ The OSp(1|4) supercurvatures vanish at the boundary→ Boundary enjoys global inv. under OSp(1|4)

• SUSY extension of Olea’s results where the invariance of the gravity Lagrangian under spacetime
diffeomorphisms was required: Boundary Lagrangian is the N = 1 SUSY extension of the EGB term

• N = 1 SUGRA also allows k 6= 0, peculiar freedom of the minimal theory
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SUSY INVARIANCE OF FLAT N = 1, D = 4 SUGRA WITH BOUNDARY

How does the Λ→ 0 (that is `→∞) limit work?

• As we can see, direct flat limit of the MacDowell-Mansouri Lagrangian does not appear to be well-defined:

LN=1
full = −

`2

8
Rab ∧ Rcd εabcd − i`ρ̄γ5 ∧ ρ

• Case where the boundary is placed asymptotically at infinity: BMS group emerges as asymptotic symmetry

• ∃ a geometric Lbdy exhibiting super-BMS symmetry?
→ Consider boundary at asymptotic infinity to allow the BMS symmetry to possibly emerge

• But to implement the geometric approach scheme the boundary is not required to be specified

• Focus here: Restore the SUSY invariance when ∂M 6= 0 by adding boundary terms

Lflat
bulk =

1
4
RabV cV d εabcd − ψ̄γ5γaρV a

The boundary terms that can be constructed using ωab , V a, ψ scale as L0 and L (while EH and RS scale as L2)
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Alternative approach proposed in 1809.07871

• Add new gauge fields with higher scale-weight: Aab = −Aba (s.w. L2) and χ (s.w. L3/2)

• They appear only in the boundary Lagrangian necessary to restore SUSY in the geometric approach
(topological role)

• They act as auxiliary fields (off-shell matching of the bosonic and fermionic d.o.f.) under the bulk perspective,
implementing the Bianchi identities of Lorentz and supersymmetry respectively, associated with ωab and ψ

Boundary contributions (not involving a scale parameter):

d
(

Aab ∧Rcd + ωa
f ∧ ωfb ∧ Acd + 2ωa

f ∧ Afb ∧ ωcd + ωab ∧ Fcd
)
εabcd = 2Rab ∧ Fcd εabcd

d
(
ψ̄γ5 ∧ σ + χ̄γ5 ∧ ρ

)
= 2σ̄γ5 ∧ ρ−

1
2
Rab ∧ χ̄γ5γab ∧ ψ

where we have defined σ ≡ Dχ and Fab ≡ DAab

Boundary Lagrangian:

Lflat
bdy = α′

(
2RabFcd εabcd

)
− iβ′

(
2σ̄γ5ρ−

1
2
Rabχ̄γ5γabψ

)

• α′ and β′ are constant dimensionless parameters amounting to the normalization of the auxiliary fields

• Lflat
bdy has scale-weight L2 as the bulk Lagrangian
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Full Lagrangian:

Lflat
full = Lflat

bulk + Lflat
bdy

=
1
4
RabV cV d εabcd − ψ̄γ5γaρV a + α′

(
2RabFcd εabcd

)
− iβ′

(
2σ̄γ5ρ−

1
2
Rabχ̄γ5γabψ

)
The boundary terms do not affect the bulk, in particular ıε(dLflat

full) = 0

SUSY invariance of Lflat
full requires to verify the condition ıε

(
Lflat

full

)
|∂M4 = 0

Boundary contributions to the field eqs. result in

Rab|∂M4 = 0

Fab|∂M4 = −
1

8α′

(
V aV b + β′χ̄γabψ

)
∂M4

ρ|∂M4 = 0

σ|∂M4 =
i

2β′
(
γaψV a)

∂M4

⇒ Supercurvatures dynamically fixed on ∂M4 to constant values in an enlarged anholonomic basis, and

ıε
(
Lflat

full

)
|∂M4 = 0 , α′ 6= 0 , β′ 6= 0
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For α′ = −1/8 and β′ = 1 (normalization) the emerging algebraic structure is more transparent:

Lflat
full = −

1
4
Rab ∧ F̂cd εabcd − 2iΞ̄γ5 ∧ ρ

⇒ “MacDowell-Mansouri-like” Lagrangian, where

F̂ab ≡ Fab − V aV b − χ̄γabψ

Ξ ≡ σ −
i
2
γaψV a

The latter, along with

Rab ≡ Rab

Ψ ≡ ρ

Ra ≡ DV a −
i
2
ψ̄γaψ

reproduce the so-called (minimal) Maxwell-covariant supercurvatures



Interpret the boundary constraints

Rab|∂M4 = 0 , F̂ab|∂M4 = 0 , Ψ|∂M4 = 0 , Ξ|∂M4 = 0

as the condition that the super-Maxwell algebra emerges as global symmetry at the boundary
(Consistency of the bulk theory: Ra = 0⇒ For continuity, we also require Ra|∂M4 = 0)

Super-Maxwell algebra:

[Jab, Jcd ] ∝ ηbcJad − ηacJbd − ηbd Jac + ηad Jbc

[Jab,Pc ] ∝ ηbcPa − ηacPb , [Pa,Pb] ∝ Zab

[Jab,Zcd ] ∝ ηbcZad − ηacZbd − ηbd Zac + ηad Zbc

[Jab,Q] ∝ γabQ , [Jab,Σ] ∝ γabΣ , [Pa,Q] ∝ γaΣ

{Q,Q} ∝ CγaPa , {Q,Σ} ∝ CγabZab

⇒ Full Lagrangian in terms of the Maxwell supercurvatures:

Lflat
full = −

1
4

Rab ∧ F̂cd εabcd − 2iΞ̄γ5 ∧Ψ



• Aab and χ auxiliary fields under the bulk perspective, they implement through their field eqs. the Bianchi
identities of Lorentz and SUSY (with Ra = 0, consistency requirement):

e.o.m. Aab ↔ DRab = 0

e.o.m. χ ↔ Dρ−
1
4
Rabγabψ = 0

• E.o.m. of ωab and ψ:

e.o.m. ωab ↔ DF̂ab − 2R[a
cAc|b] + Ξ̄γabψ − χ̄γabΨ = 0

e.o.m. ψ ↔ DΞ−
1
4

Rabγabχ+
i
2
γaΨV a = 0

The RS e.o.m. of the gravitino is hidden in the 2nd→ It can be retrieved if we restrict the auxiliary field χ to
be defined only on the boundary

• E.o.m. of V a:
1
2

V bRcd εabcd − ψ̄γaγ5ρ = 0

Einstein equations in superspace (written in the Einstein-Cartan formalism)

Lflat
full cannot be directly obtained as a flat limit of LN=1

full → Nevertheless, Lflat
full as `→∞ limit of a theory

originating from AdS4 SUGRA (but with super AdS-Lorentz covariance), extra 1-form gauge fields not only in the
boundary Lagrangian but also in the bulk one



• Aab and χ auxiliary fields under the bulk perspective, they implement through their field eqs. the Bianchi
identities of Lorentz and SUSY (with Ra = 0, consistency requirement):

e.o.m. Aab ↔ DRab = 0

e.o.m. χ ↔ Dρ−
1
4
Rabγabψ = 0

• E.o.m. of ωab and ψ:

e.o.m. ωab ↔ DF̂ab − 2R[a
cAc|b] + Ξ̄γabψ − χ̄γabΨ = 0

e.o.m. ψ ↔ DΞ−
1
4

Rabγabχ+
i
2
γaΨV a = 0

The RS e.o.m. of the gravitino is hidden in the 2nd→ It can be retrieved if we restrict the auxiliary field χ to
be defined only on the boundary

• E.o.m. of V a:
1
2

V bRcd εabcd − ψ̄γaγ5ρ = 0
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RECOVERING FLAT SUGRA WITH BOUNDARY FROM SUPER-ADS4

Start from the AdS4 SUGRA and perform the following redefinition:

• Introduce a torsionful spin connection: ω̂ab ≡ ωab +
1
`2

Aab so that

Rab → R̂ab = dωab + ωa
cω

cb +
1
`2
D(ω)A

ab +
1
`4

Aa
cAcb ≡ Rab +

1
`2

Fab

Ra → R̂a = D(ω)V
a +

1
`2

Aa
bV b −

i
2
ψ̄γaψ

where Fab ≡ D(ω)A
ab +

1
`2

Aa
cAcb

• Redefine the gravitino 1-form with the introduction of the new spinor 1-form χ: ψ → ψ +
1
`
χ so that

R̂a → Ra ≡ D(ω)V
a −

i
2
ψ̄γaψ +

1
`2

Aa
bV b −

i
`
ψ̄γaχ−

i
2`2

χ̄γaχ

ρ→ ρ̂ = D(ω)ψ +
1
`

(
D(ω)χ+

1
4`

Aabγabψ +
1

4`2
Aabγabχ

)
≡ ρ+

1
`

Φ

where Φ ≡ D(ω)χ+
1
4`

Aabγabψ +
1

4`2
Aabγabχ



⇒ Redefined super field strengths:

Rab ≡ dωab + ωa
cω

cb

Ra ≡ DV a −
i
2
ψ̄γaψ +

1
`2

Aa
bV b −

i
`
ψ̄γaχ−

i
2`2

χ̄γaχ

ρ ≡ Dψ

Fab ≡ DAab +
1
`2

Aa
cAcb

Φ ≡ Dχ+
1
4`

Aabγabψ +
1

4`2
Aabγabχ

⇒ Bulk Lagrangian:

L`bulk =
1
4
εabcd RabV cV d +

1
4`2

εabcdFabV cV d − ψ̄γ5γaρV a −
1
`
ψ̄γ5γaΦV a

−
1
`2
χ̄γ5γaΦV a −

1
`
χ̄γ5γaρV a −

1
8`2

εabcd V aV bV cV d

−
i

2`
ψ̄γ5γabψV aV b −

i
`2
χ̄γ5γabψV aV b −

i
2`3

χ̄γ5γabχV aV b



In the presence of a non-trivial boundary, consider the full Lagrangian:

L`full = L`bulk + L`bdy

=
1
4
εabcd RabV cV d +

1
4`2

εabcdFabV cV d − ψ̄γ5γaρV a −
1
`
ψ̄γ5γaΦV a

−
1
`2
χ̄γ5γaΦV a −

1
`
χ̄γ5γaρV a −

1
8`2

εabcd V aV bV cV d

−
i

2`
ψ̄γ5γabψV aV b −

i
`2
χ̄γ5γabψV aV b −

i
2`3

χ̄γ5γabχV aV b

+ µεabcd

(
2RabFcd +

1
`2

FabFcd
)

− iν
(

2ρ̄γ5Φ + Φ̄γ5Φ−
1
2

Rabψ̄γ5γabχ−
1
4`

Fabψ̄γ5γabψ

−
1

2`2
Fabψ̄γ5γabχ−

1
4`

Rabχ̄γ5γabχ−
1

4`3
Fabχ̄γ5γabχ

)



Boundary contributions to the field eqs. ⇒ Supercurvatures fixed to constant values on ∂M4 in an enlarged
anholonomic basis: 

Rab|∂M4 = −
ν

16µ`

(
ψ̄γabψ

)
∂M4

Fab|∂M4 = −
1

8µ

(
V aV b + νχ̄γabψ +

ν

2`
χ̄γabχ

)
∂M4

ρ|∂M4 = 0

Φ|∂M4 =
i

2ν

(
γaψV a +

1
`
γaχV a

)
∂M4

Condition ıε
(
L`full

)
|∂M4 = 0 for SUSY of the full Lagrangian realized when (h 6= −1)

µ = −
1
8

1
1− h2

, ν =
1

1− h

Setting h = 0⇒ µ = −1/8 and ν = 1; L`full → MacDowell-Mansouri-like:

L`full = −
1
4
RabFcd εabcd −

1
8`2

FabFcd εabcd − 2iΩ̄γ5ρ−
i
`

Ω̄γ5Ω



Super field strengths in L`full:

Rab ≡ dωab + ωa
cω

cb −
1
2`
ψ̄γabψ

Ra ≡ DV a −
i
2
ψ̄γaψ +

1
`2

Aa
bV b −

i
`
ψ̄γaχ−

i
2`2

χ̄γaχ

ρ ≡ Dψ

Fab ≡ DAab − V aV b − χ̄γabψ +
1
`2

Aa
cAcb −

1
2`
χ̄γabχ

Ω ≡ Dχ−
i
2
γaψV a −

i
2`
γaχV a +

1
4`

Aabγabψ +
1

4`2
Aabγabχ

R.h.s. of these supercurvatures to zero (from boundary constraints): Maurer-Cartan eqs. associated with a
SUSY extension of the so-called AdS-Lorentz algebra (semi-simple extension of Poincaré algebra)

`→∞ of L`full is precisely Lflat
full

(Holds also for the supercurvatures and global symmetry at the boundary: Super AdS-Lorentz in the limit `→∞
reduces to super-Maxwell)



APPLICATIONS OF THE FORMALISM TO ASYMPTOTIC BOUNDARIES

+ AVZ D = 3 model (exhibiting “unconventional SUSY”) from N = 2, D = 4 pure SUGRA with a 3D boundary

L. Andrianopoli, B. L. Cerchiai, R. D’Auria, M. Trigiante, 1801.08081

• AVZ model: Based on a 3D CS Lagrangian with OSp(2|2) supergroup, but features a Dirac spinor χ(AVZ) as the only
propagating d.o.f.; Important applications in the description of graphene-like systems near the Dirac points

P. D. Alvarez, M. Valenzuela, J. Zanelli, 1109.3944

• χ(AVZ) emerges by imposing the following condition on the spacetime component of the odd CS connection 1-form Ψ:

χ
(AVZ)
α = i

(
γ

i
)
αβ

Ψβ
µeµ

i (α, β = 1, 2 , i = 0, 1, 2 , µ = 0, 1, 2)

• Correspondence with the CS model of AVZ found for specific choice of the D = 3 boundary: Local AdS3 geometry at
spatial infinity of the D = 4 theory (asymptotically AdS4 solutions featuring this boundary geometry comprise the
“ultraspinning limit” of AdS4-Kerr black hole)

+ N = 2 SUSY extension of EGB term→ Counterterms for holographic renormalization? Holographic
framework for N = 2, D = 4 pure AdS4 SUGRA, including all the contributions from the fermionic fields

L. Andrianopoli, B. L. Cerchiai, R. Matrecano, O. Miskovic, R. Noris, R. Olea, L. R., M. Trigiante, 2010.02119

+ Possible applications to flat SUGRA in a holographic context? → A natural boundary dual to flat gravity has
been recently identified in the framework of Carrollian fluids (BMS4 ∼= conformal Carroll)→ At SUSY level?

L. Ciambelli, C. Marteau, A. C. Petkou, P. M. Petropoulos, K. Siampos, 1802.06809
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OPEN DIRECTIONS

Regarding the geometric approach to the boundary problem in SUGRA:

+ Extension to higher-dimensional, as well as to N -extended, pure or matter coupled, SUGRA models
(including fields with spin < 1)

• The SUSY extension of the EGB term is unique for a given theory withN ≥ 2 SUSY; it is total derivative,
corresponding to a boundary term in superspace

• Topological index in superspace associated with this invariant?
• Could be investigated using the formalism of integral forms in superspace

L. Castellani, R. Catenacci, P. A. Grassi, 1409.0192, 1503.07886

Regarding applications in the context of holography:

+ Holographic contact with the AVZ model and “SCFT side”→ Dual field theory of which the AVZ model
provides an effective description? Still dual SCFT?

+ Application of flat SUGRA with boundary in the geometric approach in the context of flat holography
• Role of the “topological auxiliary fields” Aab and χ?
• Relation between super-Maxwell and super-BMS4 (or super-Carroll)?
• First step: Intrinsic description of the boundary Lagrangian for the case of a null boundary geometry, decomposition of

tensorial structures w.r.t. those covariant under the symmetries of the chosen boundary

THANK YOU!
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