Indirect evidence for dark matter density spikes around stellar-mass black holes

Man Ho Chan

The Education University of Hong Kong

Reference paper: M. H. Chan & C. M. Lee, Indirect evidence for dark matter density spikes around stellar-mass black holes, *The Astrophysical Journal Letters* 943, L11 (2023).

Press release

SciNews

https://www.sci.news/astronomy/darkmatter-density-spikes-stellar-mass-blackholes-11716.html

• Phys.org

https://phys.org/news/2023-03-teamindirect-evidence-dark-black.html

• Live science

https://www.livescience.com/black-holesmay-be-swallowing-invisible-matter-thatslows-the-movement-of-stars

Astronomers Find Evidence for Dark Matter Density Spikes around Stellar-Mass Black Holes

Mar 6, 2023 by News Staff

« Previous | Next »

Published in Astronomy Tagged as A0620-00 Binary star Black hole Dark matter Star

Stellar-mass black hole XTE J1118+480

You Might Like

Astronomers Detect Afterglow of Collision between Two Ice-Ciant Exeptanets

Hubble Zooms in on Barred Spiral Galaxy NGC It has been suggested for a long time that dark matter would form a density spike around a black hole. However, no promising evidence has been observed so far to verify this theoretical suggestion. In a new paper, astronomers from the Education University of Hong Kong report the existence of dark matter density spikes around two nearby stellar-mass black holes: A0620-00 and XTE J1118+480.

Black hole

- Nothing can escape from the event horizon of a black hole, even light
- Can attract the surrounding matter gravitationally
- Origin:
- 1. Death of a star
- 2. Primordial
- 3. Others

Dark matter

- Observations reveal dark matter exists (some missing mass in galaxies, galaxy clusters, etc.)
- Around 90% of matter is dark matter in our universe
- Dark matter may be unknown particles
- Dark matter almost does not interact with ordinary matter
- We can see the effect of dark matter via gravitational interaction

Dark matter surrounding a black hole

- Dark matter is distributed throughout a galaxy
- Therefore, any black holes inside a galaxy should be surrounded by dark matter
- A black hole would swallow some dark matter surrounding it
- Then the remaining dark matter would re-distribute to form a density spike around the black hole (a very high density near the black hole event horizon)
- The dark matter density spike might produce some observable events
- We target on the black hole binary systems

A black hole binary system

- For a black hole binary system, there is a companion star orbiting the central black hole
- Some of the gas from the companion star would be first heated up and then swallowed by the black hole
- The heated gas would emit X-ray
- By detecting the X-ray signals, we can measure the details of the system

Two target systems: A0620-00 and XTE J1118+480

- A0620-00: a K-type main-sequence star (0.35 solar mass) orbiting a black hole with mass 5.86 solar mass (period: 0.32301415 day)
- XTE J1118+480: a star with mass 0.18 solar mass orbiting a black hole with mass 7.46 solar mass (period: 0.16993404 day)

The dark matter density spike model

- The spike model originates from the Galactic supermassive black hole physics
- Theoretical calculations predicted that dark matter density distribution would be altered by a massive black hole (Gondolo & Silk 1999; Merritt 2003; Gnedin & Primack 2004)
- The conservation of angular momentum and energy would naturally force dark matter to form a dense spike (a cusp-like density profile) $\rho_{DM} \propto r^{-\gamma}$

Dark matter density spike model

- The spike index γ depends on the outer dark matter density distribution
- The benchmark model suggests

$$\gamma = \frac{9 - 2\gamma_c}{4 - \gamma_c}$$

where γ_c is the power index of the outer dark matter density distribution. For the NFW profile, we have $\gamma_c = 1$ and we can get $\gamma = 7/3$

Searching for the dark matter density spike

- Since the spike index is large (>2), this can trigger a much higher rate of dark matter annihilation because the rate is proportional to ρ_{DM}^2
- Therefore, there are various studies proposing the detection of dark matter spike by gamma-ray detection. However, no signal has been observed so far
- One possible reason might be the annihilation cross section is too small to give a large observable annihilation rate
- Besides gamma-ray detection, gravitational wave detection is also looking for the signal of dark matter density spike (merger of black holes)

The dark matter density spike model

 In fact, the same model can also be applied in the stellar-mass black holes (most other studies have not considered this, but focused on intermediate-mass black holes)

The spike model predicts $\gamma = 1.5 - 2.5$

 $2GM_{BH}$

The dark matter density spike model

- Here, the spike radius r_p is usually connect with the radius of black hole's sphere of influence r_{in} as $r_{sp} = 0.2r_{in}$ (Fields et al., 2014)
- Outside $r_{\!sp}$, the dark matter density would follow the local dark matter density ρ_0
- The radius of influence can be determined by (Merritt 2003) $M_{DM}(r \le r_{in}) = \int_0^{r_{in}} 4\pi r^2 \,\rho_{DM} dr = 2M_{BH}$
- Therefore, the black hole mass determines the spike radius

Dynamical friction

- Consider a mass M passing through a background bath of dark matter particles
- Along the direction of the movement of M, the dark matter particles would be slightly redistributed and accumulate at the back of the movement
- A slightly higher density of dark matter particles would give a gravitational force to decelerate the movement of M

Dynamical friction in the BH binary system

- One can imagine that the companion star orbiting a black hole would be slowed down via dynamical friction due to the dark matter distributed near the black hole
- This process is well known. But the key question is: how large is the dynamical friction?
- The energy loss due to dynamical friction is given by

$$\dot{E} \approx -\frac{4\pi G^2 m^2 \rho_{DM} \ln \Lambda}{v}$$

• The effect can be manifested by the orbital decay rate:

$$\dot{P} = -\frac{12\pi q G P \ln \Lambda}{(1+q)^2 \left(\frac{K}{\sin i}\right)} \left[\frac{G M_{BH}(1+q) P^2}{4\pi^2}\right]^{\frac{1}{3}} \rho_{DM}$$

Two binary systems: A0620-00 and XTE J1118+480

	A0620-00	XTE J1118+480
M _{BH}	$5.86 \pm 0.24 M_{\odot}$ (Van Grunsven et al. 2017)	$7.46^{+0.34}_{-0.69}M_{\odot}$ (Gonzalez Hernandez et al. 2014)
q	0.060 ± 0.004 (Van Grunsven et al. 2017)	0.024 ± 0.009 (Khargharia et al. 2013)
$K ({\rm km s^{-1}})$	435.4 ± 0.5 (Neilsen et al. 2008)	708.8 ± 1.4 (Khargharia et al. 2013)
i	$54^{\circ}_{1} \pm 1^{\circ}_{1}$ (Van Grunsven et al. 2017)	73.5 ± 5.5 (Khargharia et al. 2013)
P (day)	0.32301415(7) (Gonzalez Hernandez et al. 2014)	0.16993404(5) (Gonzalez Hernandez et al. 2014)
\dot{P} (ms yr ⁻¹)	-0.60 ± 0.08 (Gonzalez Hernandez et al. 2014)	-1.90 ± 0.57 (Gonzalez Hernandez et al. 2014)
d (kpc)	1.06 ± 0.12 (Gonzalez Hernandez et al. 2011)	1.70 ± 0.10 (Gonzalez Hernandez et al. 2011)

Surprising large orbital decay of BHs

- For the two closest black hole low-mass X-ray binaries (BH-LMXBs), A0620-00 and XTE J1118+480, we can measure their orbital periods *P* precisely
- Observations found that there exist abnormally fast orbital decays in these two BH-LMXBs:
- A0620-00: $\dot{P} = -0.60 \pm 0.08$ ms/yr
- XTE J1118+480: $\dot{P} = -1.90 \pm 0.57$ ms/yr
- Theory of gravitational-wave radiation only predicts $\dot{P} \sim -0.02$ ms/yr

Surprising large orbital decay of BHs

- Some proposals have been suggested:
- 1. Magnetic braking of the companion star: the surface magnetic field of the companion star is very strong (e.g. > 10^4 G), the coupling between the magnetic field and the winds from the companion star driven by X-ray irradiation from the black hole would decrease the orbital period through tidal torques (Justhan et al. 2006; Chen & Li 2015)
- 2. The tidal torque between the circumbinary disk and the binary can efficiently extract the orbital angular momentum from the binary to cause the orbital decay (Chen & Li 2015)

Surprising large orbital decay of BHs

- However, recent simulations show that the predicted mass transfer rate and the circumbinary disk mass are much greater than the inferred values from observations (Chen & Li 2015)
- Also, the calculated initial mass and effective temperature of the companion stars do not match the observations somewhat (Chen & Podsiadlowski 2019)
- Therefore, the abnormally fast orbital decays in the two BH-LMXBs are still a mystery

The Model

- We applied the dark matter density spike model to the two target BH-LMXBs to constrain the spike index
- Assuming the orbital decays of the two BH-LMXBs originate from the dynamical friction of dark matter
- We get
- A0620-00: $\gamma = 1.71^{+0.01}_{-0.02}$
- XTE J1118+480: $\gamma = 1.85^{+0.04}_{-0.04}$
- The values of the spike index are consistent with the spike model

Results

The dark matter density spike model

- The spike index γ is the only unknown free parameter
- Generally, it can be ranging from 1.5 to 2.5
- If the gravitational scattering of stars is important, the stellar heating effect would drive the value down to 1.5 (Gnedin & Primack 2004)
- The heating time scale is

$$t_{\text{heat}} = \frac{\sqrt{3\pi} \Gamma(0.5) M_{\text{BH}}}{18m \ln \Lambda} \left(\frac{GM_{\text{BH}}}{r_{\text{in}}^3} \right)^{-1/2}$$

= 1.2 × 10¹⁵ s
× $\left(\frac{M_{\text{BH}}}{5M_{\odot}} \right)^{1/2} \left(\frac{r_{\text{in}}}{5 \text{ pc}} \right)^{3/2} \left(\frac{m}{M_{\odot}} \right)^{-1} \left(\frac{\ln \Lambda}{3} \right)^{-1}$

The dark matter density spike model

- Therefore, we expect that if the age of the black hole $t_{BH} \ge t_{heat}$, the spike index would be more likely approach $\gamma = 1.5$
- The heating time scales for the two BH-LMXBs are
- A0620-00: $t_{heat} = 3.5 \times 10^{15} \text{ s}$
- XTE J1118+480: $t_{heat} = 6.1 \times 10^{15}$ s
- Although we don't know the age of the black holes, we can assume $t_{BH} \leq P/\dot{P}$:
- A0620-00: $t_{BH} \leq 1.7 \times 10^{15} \text{ s}$
- XTE J1118+480: $t_{BH} \leq 3.5 \times 10^{14} {
 m s}$
- Therefore, we can get a consistent picture for the dark matter density spike model and provide a good explanation for the orbital decay rates observed

The fitted parameters

	A0620-00	XTE J1118+480
a (AU)	$0.0169^{+0.0003}_{-0.0002}$	$0.0118^{+0.0002}_{-0.0004}$
$\rho_{\rm DM}(a) \ ({\rm g \ cm^{-3}})$	$7.65^{+1.62}_{-1.43} \times 10^{-13}$	$1.60^{+1.51}_{-0.73} \times 10^{-11}$
γ	$1.71^{+0.01}_{-0.02}$	$1.85_{-0.04}^{+0.04}$
$r_{\rm in}$ (pc)	$5.41^{+0.10}_{-0.09}$	$5.34_{-0.06}^{+0.02}$
t_{heat} (s)	3.5×10^{15}	6.1×10^{15}
$t_{\rm BH}$ (s)	$\leqslant 1.7 imes 10^{15}$	$\leq 3.5 \times 10^{14}$

The effect of dark matter annihilation

- If dark matter annihilation rate is large enough, the spike structure might be destroyed and the central dark matter density would approach the constant saturation density $\rho_{sat} = m_{DM}/(\sigma v t_{BH})$ when $\rho_0 \left(\frac{r}{r_{in}}\right)^{-\gamma} > \rho_{sat}$ (Lacroix 2018)
- If the saturation density already achieved, we can determine the upper limits of dark matter mass for this case.
- Taking the standard annihilation rate $\sigma v = 2.2 \times 10^{-26} \text{ cm}^3/\text{s}$ predicted by standard cosmology (Steigman et al. 2012), we can get $m_{DM} \leq 14$ GeV for A0620-00 and $m_{DM} \leq 48$ GeV for XTE J1118+480

The effect of dark matter annihilation

- Since many recent stringent constraints of thermal annihilating dark matter indicate $m_{DM} \ge 100$ GeV (Ackermann et al. 2015; Regis et al. 2021), the effect of dark matter annihilation is not significant in our study
- Therefore, omitting the effect of dark matter annihilation can be justified

Discussion

- The results are consistent with the dark matter density spike model surrounding black holes
- The high density of dark matter distributed near the black holes can exert dynamical friction to slow down the companion stars
- There is no satisfactory explanation for the observed decay in orbital periods for A0620-00 and XTE J1118+480 before this study
- Now, this model provides a satisfactory explanation
- This also provides the first evidence for a high density of dark matter around a stellar-mass black hole (with spike index > 1.5)

Further work

- There is another known black hole binary Nova Muscae which shows an abnormally fast orbital decay -20 ms/yr
- If there is a high density of dark matter around a black hole, we can investigate these similar systems in order to constrain the properties of dark matter
- There are at least 18 black hole binaries in our galaxy which can give rich information to study dark matter → a new research direction on dark matter

Q & A

Thanks