Highly relativistic solutions of the Einstein-Vlasov system and a comparison to solutions of the Einstein-Dirac system

Håkan Andréasson

University of Gothenburg, Sweden

UBB seminar series, December 2023

Plan of the talk

- I will introduce the Einstein-Vlasov (EV) system and I will outline how to construct spherically symmetric static solutions of the EV system. I will present some old results of mine on compact solutions in the massive case.
- I will discuss the existence of static solutions of the massless EV system and the relation to geons. This is joint work with David Fajman and Maximilian Thaller.
- I will present a more recent result on massless solutions surrounding a Schwarzschild black hole. As a consequence a new class of compact solutions is obtianed.
- I will present results from an ongoing study on the comparison between spherically symmetric static solutions of the EV system and the Einstein-Dirac system. This is a joint work with Joakim Blomqvist.

The Einstein-Vlasov system

This system describes a collisionless ensemble of particles, where the particles typically are stars, galaxies or clusters of galaxies, which interact through the gravitational field created collectively. In the massless case the particles could be photons.

This system has rich dynamics:

- dispersion for small data
- formation of black holes for large data
- steady states exist (both stable and unstable)
- time periodic oscillations
- serves as a good model in cosmology
- static solutions of the Einstein-Dirac system are very similar (as we will see)

The Einstein-Vlasov system

Let $\left(x^{\alpha}, p^{\alpha}\right)$ be local coordinates on the tangent bundle of the spacetime (M, g).

The mass shell

$$
P M=\left\{g_{\alpha \beta} p^{\alpha} p^{\beta}=-m^{2}, p^{\alpha} \text { is future pointing }\right\} \subset T M,
$$

is invariant under geodesic flow

$$
\dot{x}^{\alpha}=p^{\alpha}, \dot{p}^{\alpha}=-\Gamma_{\beta \gamma}^{\alpha} p^{\beta} p^{\gamma} .
$$

In the massive case we normalize the rest mass so that $m=1$, and in the massless case $m=0$.

Typically p^{0} can be expressed in terms of $p^{a}, a=1,2,3$ by the mass shell condition.

On PM we thus use coordinates $\left(t, x^{a}, p^{a}\right), a_{\varepsilon}=1,2,3$.

The Einstein-Vlasov system

The Vlasov equation for $f=f\left(t, x^{a}, p^{a}\right)$ on PM reads

$$
\partial_{t} f+\frac{p^{a}}{p^{0}} \partial_{x^{a}} f-\frac{1}{p^{0}} \Gamma_{\beta \gamma}^{a} p^{\beta} p^{\gamma} \partial_{p^{a}} f=0 .
$$

Define the energy momentum tensor by

$$
T_{\alpha \beta}:=\sqrt{|g|} \int \frac{p_{\alpha} p_{\beta}}{-p_{0}} f d p^{1} d p^{2} d p^{3}
$$

The Einstein-Vlasov system reads (with $\Lambda=0$)

$$
R_{\alpha \beta}-\frac{1}{2} R g_{\alpha \beta}=8 \pi T_{\alpha \beta}
$$

It has nice mathematical properties!

The static spherically symmetric EV system

The metric takes the following form in Schwarzschild coordinates

$$
d s^{2}=-e^{2 \mu(r)} d t^{2}+e^{2 \lambda(r)} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)
$$

where $r \geq 0, \theta \in[0, \pi], \varphi \in[0,2 \pi]$.
Asymptotic flatness is expressed by the boundary conditions

$$
\lim _{r \rightarrow \infty} \lambda(r)=\lim _{r \rightarrow \infty} \mu(r)=0
$$

and a regular center requires

$$
\lambda(0)=0 .
$$

The Einstein equations

The Einstein equations read

$$
\begin{gathered}
e^{-2 \lambda}\left(2 r \lambda_{r}-1\right)+1=8 \pi r^{2} \rho, \\
e^{-2 \lambda}\left(2 r \mu_{r}+1\right)-1=8 \pi r^{2} p, \\
e^{-2 \lambda}\left(\mu_{r r}+\left(\mu_{r}-\lambda_{r}\right)\left(\mu_{r}+\frac{1}{r}\right)\right)=8 \pi p_{T} .
\end{gathered}
$$

The two first equations, together with the Vlasov equation, imply the last equation.

Here ρ, p and p_{T} denote the energy density, the radial pressure and the tangential pressure respectively.

The Vlasov equation

By symmetry $f=f(r, w, L), w \in \mathbb{R}, L \geq 0$.
The variables w and L can be thought of as the radial momentum and the square of the angular momentum respectively.

Remark: Note that each particle can carry angular momentum although the total angular momentum is zero due to spherical symmetry.

The Vlasov equation for $f=f(r, w, L)$ is given by

$$
\frac{w}{\mathcal{E}} \partial_{r} f-\left(\mu_{r} \mathcal{E}-\frac{L}{r^{3} \mathcal{E}}\right) \partial_{w} f=0
$$

where

$$
\mathcal{E}=\mathcal{E}(r, w, L)=\sqrt{1+w^{2}+L / r^{2}}
$$

The matter quantities

The matter quantities are given by

$$
\begin{aligned}
\rho(r) & =\frac{\pi}{r^{2}} \int_{-\infty}^{\infty} \int_{0}^{\infty} \mathcal{E} f(r, w, L) d w d L \\
p(r) & =\frac{\pi}{r^{2}} \int_{-\infty}^{\infty} \int_{0}^{\infty} \frac{w^{2}}{\mathcal{E}} f(r, w, L) d w d L \\
p_{T}(r) & =\frac{\pi}{r^{4}} \int_{-\infty}^{\infty} \int_{0}^{\infty} \frac{L}{\mathcal{E}} f(r, w, L) d w d L
\end{aligned}
$$

The ansatz

In addition to the angular momentum L the quantity

$$
E:=e^{\mu(r)} \sqrt{1+w^{2}+L / r^{2}}=e^{\mu(r)} \mathcal{E}
$$

is conserved along characteristics.
The ansatz

$$
f(r, w, L)=\Phi(E, L),
$$

for some function Φ, then satisfies the Vlasov equation and constitutes an efficient way to construct static solutions of the EV system.

Remark: Jeans' theorem states that for the spherically symmetric Vlasov-Poisson system (i.e. the Newtonian case), all solutions are obtained in this way. This is not true for the Einstein-Vlasov system [Schaeffer '99].

Choice of ϕ

The following form of Φ will be used (the polytropic ansatz)

$$
\Phi(E, L)=\left(E_{0}-E\right)_{+}^{k}\left(L-L_{0}\right)_{+}^{\prime},
$$

where $I \geq-1 / 2, k \geq 0, L_{0} \geq 0, E_{0}>0$, and $x_{+}:=\max \{x, 0\}$.
With this ansatz ρ takes the form

$$
\rho(r)=\frac{2 \pi}{r^{2}} \int_{\sqrt{1+\frac{L_{0}}{r^{2}}}}^{E_{0} e^{-\mu(r)}} \int_{L_{0}}^{r^{2}\left(s^{2}-1\right)} \Phi\left(e^{\mu} s, L\right) \frac{s^{2}}{\sqrt{s^{2}-1-L / r^{2}}} d L d s
$$

Similar expressions for p and p_{T}.

To summarize

The metric is

$$
d s^{2}=-e^{2 \mu(r)} d t^{2}+e^{2 \lambda(r)} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)
$$

The static Einstein-Vlasov system takes the form

$$
\begin{aligned}
& e^{-2 \lambda}\left(2 r \lambda_{r}-1\right)+1=8 \pi r^{2} \rho, \\
& e^{-2 \lambda}\left(2 r \mu_{r}+1\right)-1=8 \pi r^{2} p,
\end{aligned}
$$

with boundary conditions $\lambda(0)=\lambda(\infty)=\mu(\infty)=0$, where

$$
\begin{aligned}
& \rho(r)=\frac{2 \pi}{r^{2}} \int_{\sqrt{1+\frac{L_{0}}{r^{2}}}}^{E_{0}-e^{-\mu(r)}} \int_{L_{0}}^{r^{2}\left(s^{2}-1\right)} \Phi\left(e^{\mu} s, L\right) \frac{s^{2}}{\sqrt{s^{2}-1-L / r^{2}}} d L d s . \\
& p(r)=\frac{2 \pi}{r^{2}} \int_{\sqrt{1+\frac{L_{0}}{r^{2}}}}^{E_{0}-\mu(r)} \int_{L_{0}}^{r^{2}\left(s^{2}-1\right)} \Phi\left(e^{\mu} s, L\right) \sqrt{s^{2}-1-L / r^{2}} d L d s .
\end{aligned}
$$

Existence and numerics

Rein and Rendall have shown existence (1995-1999) of solutions. Main difficulty to show finite extension.

In a numerical project with Gerhard Rein (2005) we studied some features of solutions of the static Einstein-Vlasov system. We found

- Multi-peaks
- Arbitrarily thin shells (these are not Einstein clusters)
- Spirals in the M-R diagram
- The Buchdahl inequality holds (although the assumptions by Buchdahl are violated)

A ball configuration, isotropic case ($L_{0}=0$ and $I=0$)

A single shell $\left(L_{0}=0.2, k=0, I=1.5\right.$ and $\left.y(0)=0.4\right)$

A shell with two peaks $(y(0)=0.12)$

Figure: A vacuum region before the tail

Multi-peaks of shells $\left(L_{0}>0\right)$

... more peaks

$k=1, l=10, L_{0}=3, y(0)=0.01$

Figure: Multi-peaks of shells

Not possible for the Vlasov-Poisson system, it is a purely relativistic feature!

Spirals in the (R, M) diagram

Figure: $k=0, I=10.5,0.01 \leq y(0) \leq 0.99$
In astrophysics conclusions about stability are often drawn from the "Poincaré turning point principle" based on a spiral diagram.

How large can $2 m / r$ possibly be?

Figure: $\Gamma:=\sup 2 m / r$ versus $y(0)$

The Schwarzschild solution

Consider a spherically symmetric object with mass M and radius R. For $r>R$ there is vacuum and the Einstein equations can be solved explicitly by the Schwarzschild solution:

$$
d s^{2}=-\left(1-\frac{2 M}{r}\right) d t^{2}+\frac{1}{1-\frac{2 M}{r}} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)
$$

Note that the Schwarzschild solution is singular when $r=2 M$.

Schwarzschild asked already in 1916 the question:
How large can $2 M / R$ possibly be for a static solution?
He gave the answer

$$
2 M / R \leq 8 / 9
$$

in the special case of the Schwarzschild interior solution which has constant energy density and isotropic pressure.

The Buchdahl inequality

In 1959 Buchdahl extended the result by Schwarzschild; namely under the hypotheses that
i) the energy density is non-increasing outwards
ii) the pressure is isotropic $\left(p=p_{T}\right)$

Buchdahl showed that

$$
2 M / R \leq 8 / 9
$$

Restrictions

- The assumptions made by Buchdahl are very restrictive: they are not satisfied by any known stable field configuration and they are not satisfied for most of the static solutions of the Einstein-Vlasov system.
- The satuarting solution is the constant energy density solution found by Schwarzschild where the pressure becomes infinite. A consequence is that the dominant energy condition is violated. Hence, it is non-physical.

A general inequality

Let

$$
m(r)=4 \pi \int_{0}^{\infty} s^{2} \rho(s) d s
$$

so that $m(R)=M$, where R is the outer boundary of the object.

Theorem (A. (2007))

Assume that $p+2 p_{T} \leq \Omega \rho$, where p and ρ are non-negative, and $\Omega>0$ is a constant. Then

$$
\sup \frac{2 m(r)}{r} \leq \frac{(1+2 \Omega)^{2}-1}{(1+2 \Omega)^{2}}
$$

and the inequality is sharp. The saturating solution is given by an infinitely thin shell solution.

Remark: Note that $\Omega=1$ holds for Vlasov matter and that it gives $2 m / r \leq \frac{8}{9}$.

Arbitrarily thin shells of the EV system do exist

Theorem (A. (2006))

Given $\epsilon>0$, there exists static solutions of the spherically symmetric Einstein-Vlasov system such that the density function f is positive on $\left(R_{0}, R_{1}\right)$, where

$$
\frac{R_{1}}{R_{0}} \leq 1+\epsilon
$$

and vanishes for $r \leq R_{0}$ and for $r \geq R_{1}$.
As a consequence, for any $\epsilon>0$, there is a solution to the Einstein-Vlasov system such that

$$
\frac{8}{9}-\epsilon<\frac{2 M}{R}<\frac{8}{9}
$$

Remark: The thin shells are not Einstein clusters.

The charged case

Let us now consider the charged case. The Schwarzschild solution is now replaced by the Reissner-Nordström solution

$$
1-\frac{2 M}{r} \rightarrow 1-\frac{2 M}{r}+\frac{Q^{2}}{r^{2}} .
$$

The problem of finding an upper bound on M / R for a given total charge Q were considered in a number of papers but neither a transparent nor a general inequality similar to the case without charge, i.e.,

$$
\frac{2 M}{R} \leq \frac{8}{9}
$$

were found.

A general inequality with charge

Dedicated to the memory of my father Dan Andréasson (1933-2008).

Theorem (A. (2008))

Assume that $p+2 p_{T} \leq \rho$, where p and ρ are non-negative and assume that $Q \leq M$. Then

$$
\sqrt{M} \leq \frac{\sqrt{R}}{3}+\sqrt{\frac{R}{9}+\frac{Q^{2}}{3 R}}
$$

and the inequality is sharp.

Remark: i) Note that the inequality is saturated in the extreme case $M=Q=R$. In particular there is no gap to a transition to a black hole!

Geons

- Wheeler introduced the concept of a geon 1955
- Wheeler studied numerically idealized spherically symmetric geons
- Static thin shell solutions where found with the property that $2 m / r \approx 8 / 9$
- The massless EV system models a photon gas
- The massless EV system thus provides an alternative model for a geon

Existence of massless solutions of the EV system

Theorem (A., Fajman and Thaller (2016))

There exist static, spherically symmetric, asymptotically flat solutions to the massless Einstein-Vlasov system, with compactly supported matter quantities. These solutions have the property that

$$
\frac{4}{5}<\sup _{r \in[0, \infty)} \frac{2 m(r)}{r}<\frac{8}{9}
$$

Existence of massless solutions surrounding a black hole

Motivated by the recent proof of stability of Kerr I became interested in massless solutions surrounding a black hole.

Theorem (A. (2021))

Let $M_{0} \geq 0$ be the ADM mass of a Schwarzschild black hole. Then there exist static solutions with finite ADM mass to the massless spherically symmetric Einstein-Vlasov system surrounding the black hole. The matter components are supported on a finite interval [R_{0}, R_{1}], where $R_{0}>3 M_{0}$, and spacetime is asymptotically flat.

New class of solutions with $\frac{2 M}{R} \rightarrow \frac{8}{9}$

Note that the result holds also in the case when $M_{0}=0$ (and in the massive case) but that the family of solutions is different from the family of solutions discussed above. In the present situation we require the inner radius R_{0} to be large whereas in the previous case R_{0} is required to be small.

Both families share the property that $\Gamma \rightarrow 8 / 9$ in the extreme limits: $R_{0} \rightarrow 0$ or when $R_{0} \rightarrow \infty$. The crucial thing being that

$$
\frac{R_{1}}{R_{0}} \rightarrow 1 \text { in the limit, }
$$

where matter is supported in $\left[R_{0}, R_{1}\right]$. For instance:

- if $R_{1}=R_{0}+R_{0}^{3 / 2}$ then $R_{1} / R_{0} \rightarrow 1$ as $R_{0} \rightarrow 0$
- if $R_{1}=R_{0}+R_{0}^{1 / 2}$ then $R_{1} / R_{0} \rightarrow 1$ as $R_{0} \rightarrow \infty$

Static solutions of the Einstein-Dirac system versus solutions of the EV system

- In 1998, Finster, Smoller and Yau, were able to generate spherically symmetric static solutions to the Einstein-Dirac system. The configuration they study consists of two uncharged fermions with opposite spin in order to yield a spherically symmetric system.
- A few years ago, Leith, Hooley, Horne and Dritschel, generalized this study to an even number of fermions, κ. I noticed that the solutions they obtain have striking similarties with solutions of the Einstein-Vlasov system as κ increases.
- This gives rise to a nice opportunity to study similarties of solutions with a quantum signature and solutions of a classical system, for a small number of particles.

The Einstein-Dirac system

The Einstein-Dirac (ED) system reads

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=8 \pi T_{\mu \nu}
$$

with Dirac's equation

$$
(i \not D-m) \Psi=0 .
$$

Here D is the Dirac operator in curved space time and $T_{\mu \nu}$ is obtained from Ψ and the metric.

We assume that a collection of fermions occupy a single shell configuration with $j_{\text {tot }}=0$.

The number of fermions is given by $\kappa:=2 j+1$ where $j=(2 n+1) / 2, n \in \mathbb{N}$.

Deriving the Einstein-Dirac equations

The overall wave function can be written, using the Hartree-Fock formalism, as $\Psi=\psi_{j, k=-j} \wedge \psi_{j, k=-j+1} \wedge \ldots \wedge \psi_{j, k=j}$, where $\psi_{j, k}$ is the wave function of an individual fermion with angular momentum component in the z-direction equal to k.

The following ansatz for $\psi_{j, k}$ is used

$$
\psi_{j k}=\left[\begin{array}{c}
\psi_{j k}^{(1)} \\
\psi_{j k}^{(2)} \\
\psi_{j k}^{(3)} \\
\psi_{j k}^{(4)}
\end{array}\right]=e^{-i \omega t} \frac{\sqrt{T(r)}}{r}\left[\begin{array}{l}
\chi_{j-1 / 2}^{k} \alpha(r) \\
i \chi_{j+1 / 2}^{k} \beta(r)
\end{array}\right] .
$$

In the ansatz, $\chi_{j \neq 1 / 2}^{k}(\theta, \varphi)$ is a linear combination of spherical harmonics functions $Y_{j \neq 1 / 2}^{k}$ and the basis $e_{1}=[1,0]^{\top}, e_{2}=[0,1]^{\top}$.

The Einstein-Dirac system

Let the metric be given by

$$
d s^{2}=-T^{-2}(r) d t^{2}+A^{-1}(r) d r^{2}+r^{2} d \Omega^{2}
$$

then the Einstein-Dirac system takes the form:

$$
\sqrt{A} \alpha^{\prime}=\frac{\kappa}{2 r} \alpha-(\omega T+m) \beta
$$

$$
\sqrt{A} \beta^{\prime}=(\omega T-m) \alpha-\frac{\kappa}{2 r} \beta
$$

$$
r A^{\prime}=1-A-8 \pi \kappa \omega T^{2}\left(\alpha^{2}+\beta^{2}\right)
$$

$2 r A \frac{T^{\prime}}{T}=A-1-8 \pi \kappa \omega T^{2}\left(\alpha^{2}+\beta^{2}\right)+8 \pi \frac{\kappa^{2}}{r} T \alpha \beta+8 \pi \kappa m T\left(\alpha^{2}-\beta^{2}\right)$.
Here ω is the fermion energy (we only consider the ground state) determined by the shooting algorithm.

Energy density and pressure

The energy density ρ, radial pressure p_{r} and the tangential pressure p_{\perp} are given by:

$$
\begin{aligned}
\rho(r)= & \kappa \omega \frac{T^{2}(r)}{r^{2}}\left(\alpha^{2}(r)+\beta^{2}(r)\right), \\
p_{r}(r)= & \kappa \frac{T(r)}{r^{2}}\left[\omega T(r)\left(\alpha^{2}(r)+\beta^{2}(r)\right)-m\left(\alpha^{2}(r)-\beta^{2}(r)\right)\right. \\
& \left.-\kappa \frac{\alpha(r) \beta(r)}{r}\right], \\
p_{\perp}(r)= & \frac{\kappa^{2}}{2 r^{3}} T(r) \alpha(r) \beta(r) .
\end{aligned}
$$

Comparison 1

Figure: A graphical comparison of a Einstein-Dirac energy density function and a very similar result for the Einstein-Vlasov system.

Comparison 2

Einstein-Vlasov $\log \left(4 \pi r^{2} \rho+1\right),\left(k, l, L_{0}, y_{0}\right)=(4.5,19.5,2.3,0.0395)$

Figure: A graphical comparison of a Einstein-Dirac energy density function and a very similar result for the Einstein-Vlasov system.

Properties of highly relativistic solutions

Let us recall the assumptions required for the result on the bound of sup $\frac{2 m}{r}$ discussed above. If

$$
\begin{equation*}
p_{r} \geq 0 \text { and } p_{r}+2 p_{\perp} \leq \Omega \rho \tag{1}
\end{equation*}
$$

then

$$
\sup _{r>0} \frac{2 m(r)}{r} \leq \frac{(1+2 \Omega)^{2}-1}{(1+2 \Omega)^{2}}
$$

The question we ask is whether or not the conditions (1) are satisfied for solutions of the ED system.

Sign of the radial pressure p_{r}

Solutions to the ED system may have negative pressure, at least in some region. This is a quantum phenomenon since classically the pressure is non-negative.

Radial pressure results

Minimal value of some p_{r} pressures as a function of z

Figure: Einstein-Dirac states for $\kappa>16$ seems to display classical properties.

$p_{r}+2 p_{T}$ versus ρ at the radius with maximum

 compactness

Maximum compactness for some Einstein-Dirac solutions

Thank you!

