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Outline of the talk

The talk is based on the paper Bikram Keshari Parida, Abhijit Sen,
Shailesh Dhasmana, Zurab K. Silagadze, Lévy-Leblond Equation and
Eisenhart-Duval lift in Koopman-von Neumann Mechanics,
https://arxiv.org/abs/2308.16201
Published in Mod. Phys. Lett. A 38 (2023) 32n33, 2350149.
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Foreword

“To the few who love me and whom I love – to those who feel rather than
to those who think – to the dreamers and those who put faith in dreams as
in the only realities – I offer this Book of Truths, not in its character of
Truth-Teller, but for the Beauty that abounds in its Truth; constituting it
true. To these I present the composition as an Art-Product alone: – let us
say as a Romance; or, if I be not urging too lofty a claim, as a Poem.

What I here propound is true: – therefore it cannot die: – or if by any
means it be now trodden down so that it die, it will «rise again to the Life
Everlasting.»

Nevertheless it is as a Poem only that I wish this work to be judged after I
am dead."

Edgar Allan Poe, Eureka. Poem in Prose (An Essay on the Material and
Spiritual Universe) (1848).
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Our quest for the secret of beauty
Reality is not always as harmonious as one might expect from our theories.
But we continue our quest for the secret of beauty.

“Quest for the Secret of Beauty"
by Lado Gudiashvili (Georgian artist), 1942.
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Did Friedman read Eureka?
Despite its rather naive and metaphysical premises, Eureka, this bizarre
mixture of metaphysics, philosophy, poetry and science contains several
brilliant ideas central to modern cosmology:

version of the Big Bang, and the Universe evolving in time with the
inflation of the primary atom at the beginning.
resolution of Olbers’ paradox (why the sky is dark at night).
the application of the anthropic cosmological principle to explain why
the Universe is so immensely large.
the proposition of a multiverse with many causally unrelated universes,
each with its own set of physical laws.

It is curious that, as his biographers testify, Poe was Friedman’s favorite
writer. “Did Friedmann read Eureka? It would be not serious to push this
game too far."
A. Cappi, Edgar Allan Poe’s Physical Cosmology, Q. J. Roy. Astron. Soc.
35 (1994), 177-192.
https://adsabs.harvard.edu/full/1994QJRAS..35..177C
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Poem one

Lévy-Leblond equation
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The story of spin

Around 1920, the riddle of anomalous Zeeman effect.
Sommerfeld concluded that an additional quantum number J must
exist corresponding perhaps to a hidden rotation.
In 1921, Lindé identified J as a total momentum and allowed
half-integer M as a projection quantum number.
In 1925, Uhlenbeck and Goudsmit first hypothesized intrinsic spin.
Exclusion principle (1925) and Pauli equation (1927).
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The story of spin - literature

S. I. Tomonaga, The story of spin (University of Chicago Press, Chicago,
1998).

R. Milner, A Short History of Spin,
https://doi.org/10.22323/1.182.0003

H. Schmidt-Böcking, G. Gruber, B. Friedrich, One hundred years ago
Alfred Landé unriddled the Anomalous Zeeman Effect and presaged
electron spin, https://doi.org/10.1088/1402-4896/ac9c9b
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Spin - relativistic property?

In 1928 Dirac proposed the equation that naturally incorporates spin.
The Lie algebra of the Poincare group: six Ĵµν = −Ĵνµ generators of
the Lorentz transformations, and four generators P̂µ of the
translations.
Pµ can be simultaneously diagonalized: P̂µ|p⟩ = pµ|p⟩.
Little group is the subgroup of the Poincare group that leaves pµ
invariant.
Spin and helicity arise as quantum numbers characterizing irreducible
unitary representations of little groups: SO(3) if pµ = (m, 0, 0, 0), and
SE (2) if pµ = (p, 0, 0, p).
Spin is widely regarded as a relativistic property.

“The trouble with most folks isn’t so much their ignorance. It’s knowin’ so
many things that ain’t so." Josh Billings (1818-1885).
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Spin and Galilean symmetry

J.-M. Lévy-Leblond, non-relativistic Particles and Wave Equations,
Commun. Math. Phys. 6 (1967), 286.
https://link.springer.com/article/10.1007/BF01646020

J.-M. Lévy-Leblond, Galilei Group and Nonrelativistic Quantum Mechanics,
J. Math. Phys. 4 (1963), 776. https://doi.org/10.1063/1.1724319

“The main thing we want to emphasize is the naturalness of the concept of
spin. Here this manifests itself in much the same way as in relativistic
quantum mechanics. Accordingly, spin does not arise due to “relativistic
effects” and is not a “consequence of the Dirac equation.” Even in
non-relativistic quantum mechanics, spin should not be considered as an
“extraneous hypothesis”, an “independent addition”, but, on the contrary, it
immediately follows from first principles."
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Linearization of the Schrödinger equation

(
p̂i p̂jδij − 2mÊ

)
ψ(r⃗ , t) = 0.

θ̂ =
A

c
Ê + Bi p̂i +mcC

θ̂2 = p̂i p̂jδij − 2mÊ (J.M. Wilkes, The Pauli and Lévy- Leblond equations,
and the spin current density Eur. J. Phys. 41 (2020) 035402
https://arxiv.org/abs/1908.03276) or θ̂θ̂′ = p̂i p̂jδij − 2mÊ
(Lévy-Leblond).

A2 = 0, C 2 = 0, AC + CA = −2,
ABi + BiA = 0, CBi + BiC = 0,
BiBj + BjBi = 2δij .
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Lévy-Leblond Equation

Lévy-Leblond Equation is obtained by linearizing the Schrödinger
equation:

σ⃗ · (ˆ⃗p − qA⃗)ψ + 2mcχ = 0
cσ⃗ · (ˆ⃗p − qA⃗)χ+ (Ê − qϕ)ψ = 0

By eliminating χ, one can get the Pauli equation.
Predicts the correct value for the intrinsic magnetic moment of a
spin-1/2 particle (g = 2).
Little groups of the Galilei group also are characterized by s.
Spin is not an intrinsically relativistic phenomena.
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Unfairly forgotten work

W.F. Eberlein, The Spin Model of Euclidean 3-Space, Am. Math. Monthly,
69 (1962), 587-598.
https://doi.org/10.1080/00029890.1962.11989933.

“It turns out that, contrary to the usual statement in the physical literature,
electron spin then appears as a nonrelativistic effect."
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Connection with the Dirac equation

cσ⃗ · (ˆ⃗p − qA⃗)ψ + (Ê +mc2 − qϕ)χ = 0
cσ⃗ · (ˆ⃗p − qA⃗)χ+ (Ê −mc2 − q phi)ψ = 0

E = mc2 + E , E , qϕ≪ mc2.

“... thus recovering in almost a trivial way our wave equation, which
appears very simply as the nonrelativistic limit of the Dirac equation. As a
matter of fact, some authors have written down this equation when
studying the Dirac equation and its nonrelativistic limit. However, they
usually jump over to the Schrödinger equation which results from this,
losing in the process many interesting features. On the contrary, it is most
rewarding to pause a while at this stage, in order to exhibit the Galilean
invariance of this nonrelativistic equation." (Lévy-Leblond).
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Eleven kinematic groups

H. Bacry and J.-M. Lévy-Leblond, Possible kinematics, J. Math. Phys. 9
(1968), 1605-1614. https://doi.org/10.1063/1.1664490

Z.K. Silagadze, Relativity without tears, Acta Phys. Polon. B39 (2008),
811-885. https://arxiv.org/abs/0708.0929
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Landé’s paradox

De Broglie’s relation between momentum and wavelength p = h
λ

contradicts the principle of relativity, since momentum depends on the
choice of reference frame, but wavelength does not.

A. Landé, Quantum Fact and Fiction IV, Am. J. Phys. 43 (1975),
701–704. https://doi.org/10.1119/1.9717

J.-M. Lévy-Leblond, Quantum fact and classical fiction: Clarifying Landé’s
pseudo-paradox. https://doi.org/10.1119/1.10206
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Bargmann cocycle

Wave function of a free nonrelativistic particle Ψ(q) = e i(Et−p⃗·r⃗) is not
invariant under Galilean boosts g : t ′ = t, r⃗ ′ = r⃗ − V⃗ t,
p⃗ ′ = p⃗ −mV⃗ , E ′ = E − p⃗ · V⃗ + 1

2mV 2:

Ψ′(q) = e iα(g ;q)Ψ(g−1q).

g1(g2q) = (g1g2)q requires

α(g2; g1−1q)− α(g1g2; q) + α(g1; q) = ξ(g1, g2).

Bargmann cocycle and the law of superselection by mass.
Central extensions of symmetry groups.

Z.K. Silagadze, Relativity without tears, Acta Phys. Polon. B39 (2008),
811-885. https://arxiv.org/abs/0708.0929
Z.K. Silagadze, Relativistic mass and modern physics, Can. J. Phys. 92
(2014), 1643-1651. https://arxiv.org/abs/1103.6281

J. A. de Azcárraga, J. M. Izquierdo, Lie groups, Lie algebras, cohomology,
and some applications in physics, Cambridge University Press, 1998.
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Poem two

Koopman-von Neumann mechanics
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Through the Liouville equation

∂ρ(q, p, t)

∂t
=
∂Hcl

∂q

∂ρ

∂p
− ∂Hcl

∂p

∂ρ

∂q
.

The classical wave function ψ(q, p, t) =
√
ρ(q, p, t) obeys the same

Liouville equation, which can be rewritten in Schrödinger-type form

i
∂ψ(q, p, t)

∂t
= L̂ψ, L̂ = i

(
∂Hcl

∂q

∂

∂p
− ∂Hcl

∂p

∂

∂q

)
.

It is possible to develop a formulation of classical mechanics in Hilbert
space that completely resembles the quantum formalism, except that,
of course, all interference effects are absent. Koopman 1931, von
Neumann 1932.

D. Mauro, Topics in Koopman-von Neumann Theory,
https://doi.org/10.48550/arXiv.quant-ph/0301172
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Through the correspondence principle/Ehrenfest’s theorem

Ordinary axioms of quantum mechanics.
|Ψ(t)⟩ = Û(t)|Ψ(0)⟩: unitary representation of a group of time shifts.
According to Stone’s theorem, there must exist a Hermitian generating
operator with i d |Ψ⟩

dt = L̂|Ψ⟩.
Ehrenfest’s theorem d

dt ⟨q̂⟩ = ⟨ p̂
m ⟩, d

dt ⟨p̂⟩ = −⟨ d
dqU(q̂)⟩ requires

i [L̂, q̂] =
p̂

m
, i [L̂, p̂] = − d

dq
U(q̂).

[q̂, p̂] = iℏ -> quantum mechanics: ℏL̂ = Ĥ = p̂2

2m + U(q̂).

[q̂, p̂] = 0 -> we cannot construct L̂ from only dynamic variables q̂, p̂.
To correct the situation, we introduce two additional Hermitian
operators λ̂q, λ̂p, satisfying the conditions [q̂, λ̂q] = i , [p̂, λ̂p] = i .
Then L̂ = p̂

m λ̂x −
dU(q̂)
dq λ̂p.

F. Wilczek, Notes on Koopman von Neumann Mechanics, and a Step
Beyond. https://frankwilczek.com/2015/koopmanVonNeumann02.pdf
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Via Wigner function

W (q, p) =
1√
2πℏ

∫
e

i
ℏpyΨ∗(q + y/2, t)Ψ(q − y/2, t)dy .

ℏ → kℏ, y = kℏλp, u = q − kℏλp
2 , v = q +

kℏλp
2 :

W (q, p) =

√
kℏ
2π

∫
e ipλpρ(u, v , t)dλp, ; ρ(u, v , t) = Ψ∗(v)Ψ(u).

ikℏ
∂ρ

∂t
=
[
Ĥu − Ĥv

]
ρ, Ĥu =

(kℏ)2

2m
∂2

∂u2 + U(u).

This is reminiscent of the chiral decomposition method.
Generalized pseudo-differential Bopp operators:

û = q̂ − kℏλ̂p
2

, v̂ = q̂ +
kℏλ̂p

2
, p̂u = p̂ +

kℏλ̂q
2

, p̂v = p̂ − kℏλ̂q
2

.

[û, p̂u] = ikℏ, [v̂ , p̂v ] = −ikℏ k → 0 means [q̂, p̂] = 0.
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Chiral decomposition method

The difference of Hamiltonians of two uncoupled one-dimensinal oscillators
yield an interesting non-commutative system in the plane:
P. D. Alvarez, J. Gomis, K. Kamimura, M. S. Plyushchay, Anisotropic
harmonic oscillator, non-commutative Landau problem and exotic
Newton-Hooke symmetry, Phys. Lett. B 659, 906-912 (2008).
https://arxiv.org/abs/0711.2644

P. D. Alvarez, J. Gomis, K. Kamimura, and M. S. Plyushchay, (2+1)D
Exotic Newton-Hooke Symmetry, Duality and Projective Phase, Annals
Phys. 322 (2007) 1556-1586.
https://arxiv.org/abs/hep-th/0702014

P.-M. Zhang, P. A. Horvathy, Chiral Decomposition in the
Non-Commutative Landau Problem, Annals Phys. 327 (2012) 1730–1743.
https://arxiv.org/abs/1112.0409.
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k → 0 limit and Koopman-von Neumann equation

Ĥu − Ĥv =
kp̂P̂

m
+ U

(
q̂ +

kQ̂

2

)
− U

(
q̂ − kQ̂

2

)
, λ̂q =

P̂

ℏ
, λ̂p = −Q̂

ℏ
.

iℏ
∂ΨKvN

∂t
=

[
p̂P̂

m
+

1
k
U

(
q̂ +

kQ̂

2

)
− 1

k
U

(
q̂ − kQ̂

2

)]
ΨKvN ,

where
ΨKvN(q,Q, t) ∼ ρ(u, v , t).

We have a well defined k → 0 limit:

iℏ
∂ΨKvN

∂t
=

[
p̂P̂

m
+
∂U(q)

∂q
Q

]
ΨKvN = ĤKvNΨKvN .

D.I. Bondar et al., Operational dynamic modeling transcending quantum
and classical mechanics, Phys. Rev. Lett. 109 (2012) 190403.
https://arxiv.org/abs/1105.4014
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Comparison of ℏ → 0 and k → 0 limits
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Sudarshan’s interpretation

If we introduce Q̂ and P̂ operators as follows

Q̂ = iℏ
∂

∂p
, P̂ = −iℏ

∂

∂q
,

then the Liouville-Schrödinger equation takes the form

iℏ
∂ψ(q, p, t)

∂t
= Ĥψ, Ĥ =

∂Hcl

∂q
Q̂ +

∂Hcl

∂p
P̂,

and it can be interpreted as the Schrödinger equation in the
(q, p)-representation (with diagonal operators q and p) of a genuine
quantum system with two pairs of canonical variables (q,P) and (Q, p).

E. C. G. Sudarshan, Interaction between classical and quantum systems
and the measurement of quantum observables, Pramana 6(3) (1976), 117.
https://link.springer.com/article/10.1007/BF02847120
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Quantum Mechanics Free Subsystems (QMFS)
Let us assume that the Hamiltonian of the quantum system is equal to

Ĥ = f (q, p, t)P̂ + g(q, p, t)Q̂ + h(q, p, t),

where f (q, p, t), g(q, p, t), h(q, p, t) are arbitrary functions, and q,P and
Q, p represent are two pairs of quantum mechanical conjugate variables
that obey canonical commutation relations. Then the Heisenberg equations
of motion for the commuting variables q, p

dq

dt
=
∂H

∂P
= f (q, p, t),

dp

dt
= −∂H

∂Q
= −g(q, p, t),

do not contain “hidden" variables Q̂, P̂ and will correspond to classical
Hamiltonian dynamics if there exists a classical Hamiltonian function
Hcl(q, p, t) such that

f (q, p, t) =
∂Hcl

∂p
, g(q, p, t) =

∂Hcl

∂q
.
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Experimental implementation of QMFS

M. Tsang, C. M. Caves, Evading quantum mechanics: Engineering a
classical subsystem within a quantum environment, Phys. Rev. X 2 (2012),
031016. https://arxiv.org/abs/1203.2317 A pair of positive and
negative mass oscillators can be used for this purpose. The quantum
Hamiltonian in this case has the form

H =
p2
1

2m
+

1
2
mω2q2

1 − p2
2

2m
− 1

2
m omega2q2

2 .

In terms of new canonical variables

q = q1 + q2, Q =
1
2
(q1 − q2), p = p1 − p2, P =

1
2
(p1 + p2),

The Hamiltonian takes the form H = pP
m +mω2qQ, and is a KvN-type

Hamiltonian.
Sidney Coleman: “The career of a young theoretical physicist consists of
treating the harmonic oscillator in ever-increasing levels of abstraction."
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KvN mechanics is realized in QMFS

Similarity of the Sudarshan interpretation of the KvN mechanics with
the idea of QMFS is obvious.
(q, p) subsystem of KvN mechanics is nothing more than QMFS.
Resumption of interest in KvN mechanics was caused by the need to
create suitable formalism for hybrid classical-quantum systems.
The identification of quantum-mechanics-free subsystems with
Sudarshan’s interpretation of KvN mechanics, combined with the fact
that such systems were actually implemented experimentally, makes
the KvN mechanics, in a sense, engineering science.

Z.K. Silagadze, Evading Quantum Mechanics à la Sudarshan:
quantum-mechanics-free subsystem as a realization of Koopman-von
Neumann mechanics, https://arxiv.org/abs/2308.08919. Published
in Foundations of Physics 53 (2023), 92.
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Quantum gravity destroys classicality?

Modification of quantum mechanics, expected from quantum gravity,
can lead to deformation of classical mechanics (O.I Chashchina, A.
Sen, Z.K. Silagadze, On deformations of classical mechanics due to
Planck-scale physics, Int. J. Mod. Phys. D29 (2020), 2050070
https://arxiv.org/abs/1902.09728).
This deformation actually destroys the classicality if Sudarshan’s views
on KvN mechanics are taken seriously.
You are not required to accept the Sudarshan interpretation in order
to develop the KvN mechanics.
However, we now see that the existence of quantum-mechanics-free
subsystems indicates that we should take Sudarshan’s interpretation of
KvN mechanics seriously.
Therefore, we expect that, due to the universal nature of gravity, if the
effects of quantum gravity do modify quantum mechanics, these
effects will destroy the classical dynamics in QMFS.
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The path integral and quantization of KvN mechanics

Path integral formulation of KvN mechanics introduces two
Grassmannian partners of the time.
Standard quantization rules become equivalent to freezing to zero of
these Grassmannian partners of time.
The formulation of KvN mechanics via path integrals has many
features in common with Witten’s topological field theories.

A.A. Abrikosov (Jr.), E. Gozzi, Quantization and Time, Nucl. Phys. B
Proc. Suppl. 88 (2000), 369.
https://arxiv.org/aabs/quant-ph/9912050

E. Gozzi, M. Reuter, Classical Mechanics as a Topological Field Theory,
Phys. Lett. B 240 (1990), 137.
https://doi.org/10.1016/0370-2693(90)90422-3
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Third Poem

Eisenhart-Duval lift
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Embedding nonrelativistic physics inside a gravitational wave

Eisenhart theorem (1929):
Dynamical trajectories of non-relativistic (NR) mechanics can always be
lifted to geodesics of a specific relativistic spacetime with one dimension
more. Conversely, to any geodesic of this specific class of spacetimes
corresponds a solution of a NR dynamical system.

The metric is uniquely determined by the form of the NR Lagrangian.
Relativistic spacetime has a metric with Lorentz signature and carries
a covariantly constant null vector (Bargmann structure, Duval, 1985).
Bargmann space is in fact the space-time of a plane gravitational wave
in 5-dimensions.
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Plato cave allegory (Minguzzi, 2006)

X. Bekaert, K. Morand, Embedding nonrelativistic physics inside a
gravitational wave, Phys. Rev. D 88 (2013), 063008.
https://arxiv.org/abs/1307.6263
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Eisenhart-Duval metric
The simplest way to explain Eisenhart-Duval lift is to use Hamiltonian
approach. The first step is to promote time t to a dynamical variable:

H =
1

2m

n∑
i ,j=1

hij(q)pipj + V (q, t) → H̃ = pt + H(q, p, t) = 0.

The main idea behind the Eisenhart lift is to introduce a new momentum
ps conjugate to a dummy configuration space variable s to make the
Hamiltonian homogeneous in canonical momenta and turn it into a
geodesic Hamiltonian (homogeneous quadratic function of momenta):

H =
1

2m

n∑
i ,j=1

hij(q)pipj +
1
m2 p2

s V (q, t) +
1
m

pspt =
1

2m

n+2∑
A,B=1

gABpApB .

The constraint H = 0 can be interpreted as a mass-shell condition for a
massless particle in space-time with a Brinkmann-type metric

dS2 =
n∑

i ,j=1

hij dq
i dqj + 2ds dt − 2

V (q, t)

m
dt2.
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Eisenhart-Duval metric and Schrödinger equation

The massless Klein-Gordon equation in general metric is given by

□ϕ =
1√
−g

∂A

(√
−g gAB∂Bϕ

)
= 0,

which, after the field transformation (null-reduction)

ϕ(q, t, s) = e isφ (q, t) ,

is reduced to the Schrödinger equation

i
∂φ

∂t
= − 1

2m
∇2φ+ Vφ.

The Schrödinger equation can be considered as a null-reduction (reduction
in the s-direction) of the Klein-Gordon equation in the Eisenhart-Duval
metric background.
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Eisenhart-Duval metric and Lévy-Leblond equation

(2+1)D Lévy-Leblond equation can be derived from the massless (3+1)D
Dirac equation by lightlike reduction:

C. Duval, P. A. Horváthy, L. Palla, Spinors in non-relativistic Chern-Simons
electrodynamics. Annals Phys. 249 (1996) 265-297.
https://arxiv.org/abs/hep-th/951011
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Eisenhart-Duval lift in KvN mechanics
The simplest way to geometrize the KvN mechanics is to begin from the
KvN Hamiltonian and consider it as describing classical (not KvN) system:

H =
pP

m
+
∂V

∂q
Q.

Homogenizing this Hamiltonian, we get

H =
pP

m
+
∂V

∂q
Q

p2
s

m2 +
1
m
pspt ,

which corresponds to the inverse metric

gqQ = gQq = 1, g st = g ts = 1, g ss =
2
m

∂V

∂q
Q,

all other components being zero. Inverting gAB to calculate the metric
tensor gAB , we get the corresponding Eisenhart metric

dS2 = 2dq dQ + 2dt ds − 2Q
m

∂V (q)

∂q
dt2.
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KvN equation from null-reduction

Curved space KG for the massless scalar field χ(t, s, q,Q) for KvN
Eisenhart-Duval metric is

∂2χ

∂q∂Q
+

Q

m

∂V

∂q

∂2χ

∂s2 +
∂2χ

∂t∂s
= 0,

which after the field redefinition

χ(t, s, q,Q) = e imsψKvN(t, q,Q),

reduces to the equation of the form

i
∂ψKvN

∂t
=

(
Q
∂V

∂q
− 1

m

∂2

∂q∂Q

)
ψKvN ,

which is the KvN equation in the (q,Q)-representation for the classical
Hamiltonian H = p2

2m + V (q).
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The equivalence principle and the Eisenhart lift

Conditions for flatness: the Cotton tensor (d = 3) or the Weyl tensor
(d > 3) vanishes.

Cµνλ = ∇λRµν −∇νRµλ +
1
4
(gµλ∇νR − gµν∇λR) .
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Conformally flat Bargmann spaces

C. Duval, P.A. Horváthy, L. Palla, Conformal Properties of Chern-Simons
Vortices in External Fields. Phys. Rev. D50 (1994), 6658-6661.
https://arxiv.org/abs/hep-th/9404047

V =
1
2
A(t)x⃗2 + ⃗B(t) · x⃗ + D(t).
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Linear potential and free particle

Uniform gravitational field:

t = τ, x = ξ − gτ2

2
, u = v + gξτ − g2τ3

3
,

φgrv (t, x) = e
−i

gξτ−g2τ3

3


φfree(τ, ξ).

S. Dhasmana, A. Sen, Z.K. Silagadze, Equivalence of a harmonic oscillator
to a free particle and Eisenhart lift, Annals Phys. 434 (2021) 168623.
https://arxiv.org/abs/2106.09523

Phenomena of neutron interference in the presence of a weak gravitational
potential: R. Colella, A.W. Overhauser, S.A. Werner, Observation of
gravitationally induced quantum interference, Phys. Rev. Lett. 34 (1975),
1472-1474. https://doi.org/10.1103/PhysRevLett.34.1472
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Harmonic oscillator and free particle

Transformation between harmonic oscillator and free particle:

x =
ξ + c2 ω0τ + c1√

1 + ω2
0τ

2
, t =

1
ω0

tan−1 (ω0τ) , u =

v +
ω2

0ξ
2τ

2(1 + ω2
0τ

2)
− (c2 − c1 ω0τ)ω0

1 + ω2
0τ

2 ξ +
(c2

1 − c2
2 )ω

2
0τ − 2c1c2 ω0

2(1 + ω2
0τ

2)
+ c3,

whereas the wave function transforms as follows:

φH.O(t, x) = (1 + ω2
0τ

2)1/4 ×

e
−i

(
ω2
0ξ

2τ

2(1+ω2
0τ

2)
− (c2−c1ω0τ)ω0

(1+ω2
0τ

2)
ξ+

(c21−c22 )ω2
0τ−2c1c2ω0

2(1+ω2
0τ

2)
+c3

)
φfree(τ, ξ)

S. Dhasmana, A. Sen, Z.K. Silagadze, Equivalence of a harmonic oscillator
to a free particle and Eisenhart lift, Annals Phys. 434 (2021) 168623.
https://arxiv.org/abs/2106.09523
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The case of Koopmann von Neumann mechanics
For a harmonic oscillator, the coordinate transformation has the form

t = tan−1 (τ) , u =
−η

√
τ2 + 1

, v =
−ξ

√
τ2 + 1

,

s = ζ +
1

2(τ2 + 1)

[(
η2 − ξ2

)
τ
]
. q =

v + u

2
, Q = u − v .

Corresponding transformation of the KvN wave function

ψHO =
√

1 + τ2 exp

[
im

[(
ξ2 − η2) τ]

2(τ2 + 1)

]
ψfree .

For a linear potential, the coordinate transformation has the form

t = τ, u = η −
1
2
gτ2, v = ξ −

1
2
gτ2, s = ζ + (η − ξ)gτ.

Corresponding transformation of the KvN wave function

ψLinear (q,Q, t) = e−iQgτψfree

(
q +

1
2
gt2,Q, t

)
,

is unitary and represents Einstein’s equivalence principle in KvN mechanics.

A. Sen, B.K. Parida, S. Dhasmana, Z.K. Silagadze, Eisenhart lift of Koopman-von Neumann

mechanics, J. Geom. Phys. 185 (2023), 104732 https://arxiv.org/abs/2207.05073
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Massless Dirac equation for KvN Eisenhart-Duval metric

Latin indices indicate the tensor components in the local orthonormal
frame (locally inertial frame). Curved space massless Dirac equation is

i e µ
a γa ∇µΨ = 0,

where the co-variant derivatives of the Dirac spinor field Ψ(Q, q, s, t) is

∇µΨ = ∂µΨ+ i Ωµab ΣabΨ,

Σab = − i

8

[
γa, γb

]
, (1)

and the Christoffel symbols and spin-connection coefficients are given by
the usual expressions

Γαµν =
1
2
gαβ (∂µgβν + ∂νgβµ − ∂βgµν) , Ω a

µ b = e ρb eaν Γνµρ − e νb ∂µe
a
ν .
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Vierbein fields
The vierbein e µ

a satisfies e µ
a gµνe

ν
b = ηab and is defined up to a SO(2, 2)

transformation. Can be chosen as

e µ
a =



0 0
1
2
+

Q

m

∂V (q, t)

∂q
1

−1 −1
2

0 0

0 0
1
2
− Q

m

∂V (q, t)

∂q
−1

1 −1
2

0 0


,

ηab =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , gµν =


0 1 0 0
1 0 0 0
0 0 0 1

0 0 1 −2Q
m

∂V (q, t)

∂q

 , gµν =


0 1 0 0
1 0 0 0

0 0
2Q
m

∂V (q, t)

∂q
1

0 0 1 0

 .
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Constant gamma matrices

Constant gamma matrices in the tetrad frame satisfying the Clifford algebra

γaγb + γbγa = 2 ηab

can be given as

γ1 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , γ2 =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 ,

γ3 =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 , γ4 =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 .
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Christoffel symbols and spin-connection coefficients

Γqtt = −ΓsQt = −ΓstQ =
1
m

∂V

∂q
,

ΓQtt = −Γsqt = −Γstq =
Q

m

∂2V

∂q2 , Γstt = −Q

m

∂2V

∂q∂t
,

Ωt12 = −Ωt21 = Ωt23 = −Ωt32 =
1
m

∂V

∂q
+

Q

2m
∂2V

∂q2 ,

Ωt34 = −Ωt43 = Ωt41 = −Ωt14 =
1
m

∂V

∂q
− Q

2m
∂2V

∂q2 .

Accordingly, we calculate

i ΩtabΣ
ab =

1
2
(γ1 − γ3)(Ωt12γ

2 − Ωt34γ
4).

On the other hand, e t
a γ

a = γ1 − γ3, and since (γ1 − γ3)2 = 0, we see that
the spin connection does not contribute to the Dirac equation.
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Null-reduction of the massless Dirac equation

− 2
∂ψ3

∂Q
+ 2

(
∂ψ4

∂t
+

Q

m

∂V (q, t)

∂q

∂ψ4

∂s

)
= 0,

∂ψ3

∂s
+
∂ψ4

∂q
= 0,

− ∂ψ1

∂q
+ 2

(
∂ψ2

∂t
+

Q

m

∂V (q, t)

∂q

∂ψ2

∂s

)
= 0,

∂ψ1

∂s
+ 2

∂ψ2

∂Q
= 0.

The null reduction of the Dirac equation is achieved by requiring

Ψ(Q, q, s, t) = Φ(Q, q, t)e ims =


ϕ1(Q, q, t)
ϕ2(Q, q, t)
ϕ3(Q, q, t)
ϕ4(Q, q, t)

 e ims .

Then we obtain from

− ∂ϕ3

∂Q
+
∂ϕ4

∂t
+ i Q

∂V (q, t)

∂q
ϕ4 = 0, ϕ3 =

i

m

∂ϕ4

∂q
,

− ∂ϕ1

∂q
+ 2

(
∂ϕ2

∂t
+ i Q

∂V (q, t)

∂q
ϕ2

)
= 0, ϕ1 =

2i
m

∂ϕ2

∂Q
.
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KvN Lévy-Leblond Equation
The Lévy-Leblond equation in the KvN case can be written as

−

[
σ1

2

(
p̂ +

P̂

2

)
+ i

σ2

2

(
p̂ − P̂

2

)]
χ+ Q

∂V (q, t)

∂q
ξ = Êξ,

χ = − 1
m

[
σ1

(
p̂ +

P̂

2

)
+ i σ2

(
p̂ − P̂

2

)]
ξ.

Another version of the KvN Lévy-Leblond equation:

−

[
σ+ p̂ + σ−

P̂

2

]
χ+ Q

∂V (q, t)

∂q
ξ = Ê ξ,

χ = − 2
m

[
σ+ p̂ + σ−

P̂

2

]
ξ.

χ =

(
ϕ1
ϕ3

)
, ξ =

(
ϕ4
ϕ2

)
, p̂ = −i

∂

∂Q
, P̂ = −i

∂

∂q
, Ê = i

∂

∂t
,

σ+ =
σ1 + i σ2

2
and σ− =

σ1 − i σ2

2
.
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Conclusions

A general holonomic conservative system in classical dynamics with d
degrees of freedom is geometrically described by the Eisenhart-Duval
lift in terms of the geodesics of the Lorentzian metric in the
(d + 2)-dimensional space-time.
For treating time dependent dynamical systems and their symmetries,
this geometric perspective is particularly convenient.
The same geometric perspective provided by the Eisenhart-Duval lift
can also be used in quantum theory, since null reduction of the
massless KG equation from Eisenhart-Duval space-time leads to the
Schrödinger equation, and a similar null reduction of the massless
Dirac equation gives the Lévy-Leblond equation.
The Eisenhart-Duval toolkit can be applied to KvN mechanics as well,
much like the quantum case. Namely, this geometrical view on the
KvN mechanics can be extended to the case of a non-relativistic spin
described by the Lévy-Leblond equation.
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