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Outstanding question
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>

• what is the nature of 
dark matter and dark 
energy?

(ESA/Planck)

dark matter

dark energy

today’s talk



Dark matter distribution

3

• cold dark matter 
can explain large- 
scale structure of 
the Universe        
(≳ 1 Mpc)
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Planck collaboration 2020
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12 Mocz et. al.

10
1

10
2

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
1

10
2

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
1

10
2

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

Figure 4. Radially averaged (comoving) density profiles for the

dark matter, gas, and stars for 3 haloes in our simulations under

di↵erent cosmologies are shown at z = 6. The thick solid lines are

dark matter density in the baryon full-physics run, and we also

show corresponding thin lines in the dark matter only runs, which

are similar and show that the baryons have not strongly modified

the dark matter potential wells for these low mass haloes in the

early universe. Thick grey lines show where soliton profiles of

various mass/size lie, which are just marginally resolved by our

simulations. The smallest, densest, most massive soliton profile

approximately matches the simulations.

0 50

Figure 5. Anatomy of a cosmic web dark matter filament. Three

upper panels show a density slice through a filament at z = 7.

CDM has subhaloes on all scales. “WDM” shows caustic struc-

tures. And BECDM has large-scale coherent interference patterns

due to converging flow towards the filament, and a coarse-graining

of caustics on the local de Broglie length scale. The forth sub-

panel shows the estimated sizes of BECDM interference patterns

(at z = 7) by taking �dB of the velocity dispersion of “WDM”,

which are in good agreement with the actual BECDM simulation.

Bottom panel shows redshift evolution of the interference pattern

in the BECDM filament (middle snapshot is the same as BECDM

case in panel above, just rotated).

c� 2019 RAS, MNRAS 000, 1–19

WIMP

Light DM

Ultralight DM

Dark matter (DM) at small-scale
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Numerical simulation

S. Colombi/CFHT

small-scale dark matter distribution is 
key for understanding dark matter



Gravitational waves
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first discovery in 2015!

we argue that GWs probe very small-scale DM distribution!



Outline
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• geometric optics vs. wave optics

• Born approximation

• amplitude and phase fluctuations of GWs



Geometric vs. wave optics
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wave optics

geometric 
optics

geometric optics is
used for almost all analysis
of gravitational lensing

wave optics is more
fundamental than 
geometric optics



Geometric vs. wave optics
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sourceobserver

arrival time Δt

wave optics

…

superposition of waves 
ψ ∝ ∫ 𝒟 [θ(χ)] e2πifΔt

lens

e.g., MO RPP 82(2019)126901, for a review

path 𝛉(𝜒) 



Geometric vs. wave optics
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sourceobserver

wave optics

(Fermat’s principle)

superposition of waves 

geometric optics
∇(Δt) = 0at high f limit, only stationary

point of ∆t is observed

arrival time Δt

lens

e.g., MO RPP 82(2019)126901, for a review

path satisfying  𝛁(Δt) =0 

ψ ∝ ∫ 𝒟 [θ(χ)] e2πifΔt



Simplest case: point mass lens
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sourceobserver

arrival time Δt(𝛉)

lens

ρ(r) = M δD(r)

ψ ∝ ∫ dθ eiwΦ(θ)

w = 2πfΔtfid = 2πf(1 + z)
4GM

c3

O(1) function

dimensionless parameter 
controlling wave optics effect

*geometric optics at w→∞ 

*analytic solution available



Wave effect: diffraction
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sourceobserver lens

w = 2πf(1 + z)
4GM

c3
≪ 1

Rs

wavelength λ

λ ≫ RS

Schwarzschild radius

• no lensing effect (magnification μ~1)



Wave effect: interference
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sourceobserver lens

Rs

wavelength λ

• multiple light ray paths interfere         
(magnification oscillates as a func. of position/frequency)

interference

w = 2πf(1 + z)
4GM

c3
∼ 1 λ ∼ RS

Schwarzschild radius



Example
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source

lens

β1

β2

θEin



Can wave effects be observed?
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MO RPP 82(2019)126901 (with modification)

mass range of 
wave effects
for GW 
observations



Difficulty
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ψ ∝ ∫ dθ e2πifΔt(θ)

• highly oscillatory integral
    → computationally expensive and unstable



Integral equation
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• wave propagation in gravitational potential Φ

unlensed wave ψ0lensed wave ψ

potential Φ

(∇2 + 4π2f 2)ψ(x) = 16π2f 2Φ(x)ψ(x) (∇2 + 4π2f 2)ψ0(x) = 0

• solution given by an integral equation

ψ(x) = ψ0(x) − 4πf 2 ∫ dx′ 
e2πif|x−x′ |

|x − x′ |
Φ(x′ )ψ(x′ )



Scattering problem in Q.M.
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φ(r) = φ0(r) −
μ

2πℏ2 ∫ dr′ 

eik⋅(r−r′ )

|r − r′ |
V(r′ )φ(r′ )

φ0(r)

plane wave 𝜑0

scattered wave 𝜑

• solution given by an integral equation

Born
approximation

potential V



Born approximation
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• solution given by an integral equation

• first order approximation solution

ψ(x) = ψ0(x) − 4πf 2 ∫ dx′ 

e2πif|x−x′ |

|x − x′ |
Φ(x′ )ψ(x′ )

ψ(x) = ψ0(x) − 4πf 2 ∫ dx′ 

e2πif|x−x′ |

|x − x′ |
Φ(x′ )ψ0(x′ )

Takahashi et al. A&A 438(2005)L5

OUR TEAM
HSC-BOSS GALAXY-GALAXY LENSING AND CLUSTERING

(See e.g., Mizuno & Suyama 2023 for the validity of Born approximation)



Solution in Born approximation
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sourceobserver

𝜒𝜒=𝜒s𝜒=0

lens

ψ
ψ0

= 1 − 4πf2 ∫ dχ∫ dr
χs

χ(χs − χ)
Φ(x)e2πifΔtg

Δtg =
χs

2χ(χs − χ)
r −

χ
χs

rs

2

=
χs

2χ(χs − χ)
r − r⊥

2



Fresnel diffraction in optics
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spherical 
wave

point 
source

r

a b

r ≲
ab

a + b
λ fringe pattern



Fresnel scale
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rF ∼ 1 pc ( f
1 Hz )

−1/2

( χ(χs − χ)/χs

1 Gpc )
1/2

• Fresnel scale rF

probing small-scale DM distribution??

sourceobserver “lens”

rF

frequency finterference/
diffraction

(Macquart 2004; Takahashi+2005; Takahashi 2006; …)



Observables: amplitude/phase shift
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amplitude shift = Re ( ψ
ψ0 )

Im ( ψ
ψ0 )phase shift = 

ψ0

ψ

connection with 
deformation of 

observed waveform

phase shift

amplitude shift



Amplitude and phase fluctuations
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W(χ) = 4πGρ̄a−1 χ(χs − χ)
χs

matter power spectrum

• Born approximation to connect amplitude and phase 
fluctuations with matter power spectrum P(k)

ψ
ψ0

= [1 + K( f )] eiS( f )

⟨K2( f )⟩ = ∫
χs

0
dχW2(χ)∫

k dk
2π

P(k)[ sin(r2
Fk2/2)

r2
Fk2/2 ]

2

⟨S2( f )⟩ = ∫
χs

0
dχW2(χ)∫

k dk
2π

P(k)[ cos(r2
Fk2/2) − 1
r2
Fk2/2 ]

2

rF =
χ(χs − χ)

2πfχs

wave effect 
depending on 

Fresnel scale rF 

Takahashi ApJ 644(2006)80; MO & Takahashi ApJ 901(2020)58

• can be measured using frequency evolution

amplitude

phase



P(k) at pc scale??
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Figure 9: The power spectrum of the dark matter distribution in the Millennium Simulation at various
epochs (blue lines). The gray lines show the power spectrum predicted for linear growth, while the dashed
line denotes the shot-noise limit expected if the simulation particles are a Poisson sampling from a smooth
underlying density field. In practice, the sampling is significantly sub-Poisson at early times and in low
density regions, but approaches the Poisson limit in nonlinear structures. Shot-noise subtraction allows us
to probe the spectrum slightly beyond the Poisson limit. Fluctuations around the linear input spectrum on
the largest scales are due to the small number of modes sampled at these wavelengths and the Rayleigh
distribution of individual mode amplitudes assumed in setting up the initial conditions. To indicate the bin
sizes and expected sample variance on these large scales, we have included symbols and error bars in the
z= 0 estimates. On smaller scales, the statistical error bars are negligibly small.

32

=
 k

3 P
(k

)/
2π

Springel+2005

Mpc kpc pc

？
poorly explored!



P(k) at very high k
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Lensing dispersion of gravitational waves 5

Figure 1. Comparison of the Fourier transform of the halo
density profile u2(k|M) at z = 0 with and without e↵ects
of baryon and subhalos. From left to right, we show re-
sults for halos with mass M = 1015h�1M�, 1012h�1M�,
and 109h�1M�, respectively. Thin solid lines corresponds to
the case with only the smooth main halo, dashed and dot-
ted lines are after adding stellar components and subhalos,
respectively, and thick solid lines show the case with both
stellar components and subhalos are included. Here the shot
noise from stars is not included.

main halos, as detailed in Appendix B. Similarly to main
halos, we consider baryonic e↵ects for subhalos as well
using the mean stellar mass–halo mass relation for all
satellite galaxies presented by Behroozi et al. (2019).
We estimate subhalo masses before tidal stripping mf

(see Appendix B for more details) as a proxy of the
peak mass in Behroozi et al. (2019) to derive the stellar
mass fraction of subhalos, f s

⇤. The Fourier transform of
the normalized subhalo density profile is given by

usub(k|M,m) = (1�f
s
⇤)u(k|m,M)+f

s
⇤u⇤(k|mext), (22)

where u(k|m,M) is the Fourier transform of the normal-
ized BMO profile with total mass m, the concentration
parameter csub, and truncated at r

ave
t , and u⇤(k|mext)

is given by Equation (21) with rb computed from mf .

2.4. Some Examples

Before presenting examples of calculations of matter
power spectra, in Figure 1 we show the Fourier trans-
form of the halo density profile with and without e↵ects
of baryon and subhalos. The Figure indicates that both
subhalos and baryonic stellar components significantly
enhance the small scale power of individual halo density
profiles. Baryonic e↵ects depend sensitively on the halo
mass, reflecting the halo mass dependence of the stellar
mass–halo mass relation. While the e↵ects of baryon

10�2 10�1 100 101 102 103 104 105 106 107 108

k [hMpc�1]

10�1

100

101

102

103

104
k

2 P
(k

)
[h

�
1 M

pc
]

z = 0 smooth halo
w/ baryon
w/ subhalo
all

Figure 2. Comparison of matter power spectra P (k) at
z = 0 with and without e↵ects of baryon and subhalos. Lines
are same as in Figure 1.

Figure 3. Contributions from halos with di↵erent masses
to the matter power spectrum P (k) at z = 0. From left to
right thin lines, we show contributions in the 2 dex mass
range from higher to lower masses of halos. Here we show
contributions from main halos only i.e., without subhalos but
including baryonic e↵ects.

are more pronounced at M ⇠ 1012h�1
M�, the e↵ects

of subhalos are more significant for very high and low
mass halos.
Figure 2 shows matter power spectra at z = 0 com-

puted from the halo model presented above. We show
k
2
P (k) because it represents contributions to gravita-

tional lensing dispersions per ln k. We find that e↵ects
of baryon and subhalos are significant at k & 10hMpc�1.
In our model, the e↵ects of baryon (stellar compo-

baryon (stars) 
enhance P(k) shot noise

by stars
[P(k)=const]

baryon effect
is small

poorly explored!

subhalos enhance P(k)

pc

prediction 
using halo 

model 

MO & Takahashi ApJ 901(2020)58



Expected signal
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Figure 12. Left: Gravitational lensing dispersion of the gravitational wave amplitude (equation 40) for zs = 1 (solid) and zs = 3
(dashed) as a function of f1. The frequency f2 is fixed to f2 = 10f1. Thick and thin lines show calculations with and without
baryonic e↵ects, respectively. Right: Similar to the left panel, but for gravitational lensing dispersion of the gravitational wave
phase (equation 42).

the shot noise from PBHs dominates gravitational lens-
ing dispersion (see also Section 2.7). Weak lensing by
the shot noise is discussed further in Section 4 and Ap-
pendix D. Since the shot noise power spectrum (equa-
tion 26) is �Pshot(k) = f

2
PBH/n̄PBH / fPBHMPBH for a

fixed ⌦DM, gravitational lensing dispersions at the shot
noise dominated region behave as /

p
fPBHMPBH as

shown in Figure 14.

4. DISCUSSIONS

4.1. Detectability

For each gravitational wave event, we can measure
amplitude and phase fluctuations with an accuracy of
⇠ 1/⇢, where ⇢ denotes the signal-to-noise ratio of the
gravitational wave observation (Lindblom et al. 2008).
Unless gravitational lensing dispersions are significantly
boosted by PBHs, its typical value is O(10�3), indicat-
ing that ⇢ & 103 is needed to directly measure amplitude
and phase shifts due to gravitational lensing for individ-
ual gravitational wave events. We use the calculation
method described in Oguri (2018) to estimate ⇢ for the
chirp mass of 30 M� and the redshift of 1 and find that
⇢ ⇠ 30 for B-DECIGO and ⇢ ⇠ 60 for Einstein Tele-
scope. Therefore measurements of gravitational lensing
dispersions are likely to be achieved by combining ob-
servations of many gravitational wave events. For in-
stance, by combining Nevent gravitational wave events,
we can measure amplitude and phase dispersions down
to ⇠ (2/Nevent)1/4(1/⇢), suggesting thatNevent = 3⇥105

with ⇢ = 50 leads to the measurement of the dispersion
at the level of 10�3. The required number is large but
can be achieved by next-generation gravitational wave
experiments. Alternatively, observations of the modest

number of events with very sensitive space based grav-
itational wave detectors such as DECIGO (Seto et al.
2001) may allow us to measure gravitational lensing dis-
persions.
We note that measurements of gravitational lensing

dispersions do not necessarily require measurements of
redshifts of individual gravitational wave events. For in-
stance, by considering the ratio of strain amplitudes at
di↵erent frequencies the dependence on the distance to
the gravitational wave source cancels out. The depen-
dence on antenna pattern functions also cancels out if
the frequency evolution is much faster than the change
of antenna pattern functions with time. The dispersion
of phases may also be measured without knowing the
distance to the source, although the degeneracy with
binary model parameters may be in issue. We leave de-
tailed studies of measurements of gravitational lensing
dispersions in a realistic setup for future work.

4.2. Validity of Weak Lensing Approximation

Since our results rely on the weak lensing approx-
imation, it is important to check the validity of the
approximation. This is partly done in Section 2.6 in
which the matter power spectrum at k ⇠ 106hMpc�1,
which is responsible for gravitational lensing dispersions
at f ⇠ 0.1 � 1 Hz, is shown to be largely una↵ected by
removing central regions of galaxies that can produce
strong lensing. This is because the matter power spec-
trum at k ⇠ 106hMpc�1 mostly originates from halos
and subhalos with masses 1h�1

M� . M . 104h�1
M�.

Such low mass halos do not contain stars, and the con-
vergence  of such halos computed from the NFW (or
BMO) profile is quite low because it is proportional to

frequency
evolution of 
amplitude
fluctuation

baryon effect
is small

DECIGO LIGO

• signal small, need many (~105) GWs for detection!

MO & Takahashi ApJ 901(2020)58



Primordial black hole (PBH) scenario
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fPBH = 1
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Figure 9. E↵ects of PBHs on the matter power spectrum
P (k) at z = 0 assuming MPBH = 10 M�. The total mass
fractions are fPBH = 1 (dotted), 10�1 (solid), 10�2 (dashed),
and 10�3 (dash-dotted).

Figure 10. Similar to Figure 9, but the total mass fraction
is fixed to fPBH = 10�1 and masses of PBHs of MPBH =
102 M� (dotted), MPBH = 10 M� (solid), MPBH = 1 M�
(dashed), and MPBH = 10�1 M� (dash-dotted) are consid-
ered.

3.1. Geometric Optics Case

Geometric optics provides a good approximation for
calculating gravitational lensing dispersions of tradi-
tional astronomical sources such as supernovae. In this
case the dispersion of convergence smoothed over the
angular size �s is given by (e.g., Takahashi et al. 2011)

h
2
s i =

Z �s

0
d�W

2(�)

Z
k dk

2⇡
P (k)W 2

s (k��s), (30)

Figure 11. Gravitational lensing dispersions (equation 30)
as a function of the source redshift zs for the geometric optics
case, assuming a compact source size of �s = 10�3 arcsec.
We show results using our halo model including e↵ects of
baryon and subhalos (solid), our halo model but the contri-
bution of strong lensing is removed following the prescription
in Section 2.6 (dotted), the halofit model of Takahashi et al.
(2012, T12) (dashed), and the halofit model of Ben-Dayan &
Takahashi (2016, BT16) (dash-dotted).

where � is the radial distance, �s is the radial distance to
the source, the W (�) is a lensing weight function given
by (note that ⇢̄ here is the comoving matter density)

W (�) =
4⇡G

c2
⇢̄a

�1�(�s � �)

�s
, (31)

and Ws(x) is a smoothing kernel for which we assume a
top-hat filter

Ws(x) =
2J1(x)

x
. (32)

In most cases, the dispersion of magnification rather
than that of convergence is observed. For a similarly
smoothed magnification µs, a weak lensing approxima-
tion

µs ⇡ 1 + 2s, (33)

is expected to hold when |µs � 1| ⌧ 1, and in this case
we simply have h(µs � 1)2i ⇡ 4h2

s i.
Figure 11 shows examples of dispersions of conver-

gence computed using our halo model as well as the
halofit model. We find that our halo model including
baryonic e↵ects predicts significantly larger dispersions
than halofit model predictions for which baryonic e↵ects
are not included. However, as discussed in Section 2.6,
the significant fraction of the enhancement by baryonic
e↵ects comes from centers of massive galaxies that pro-
duce strong lensing. Once such regions are removed from

shot noise
by PBHs

[P(k)=const]

enhanced halo 
formation

easier 
detection in
LIGO band

MO & Takahashi ApJ 901(2020)58



Prospect? 
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• expected amplitude and phase fluctuations for 
random line-of-sight are small (~10-3)

• need to combine large number of events for 
detection, which is challenging

• any cleverer way?



Wave effects for lensed sources
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source
observer

lens
small-scale 

perturbations

• strong lensing by a massive lens, for which 
geometric optics is valid

• small-scale density perturbations that produce 
perturbative wave optics effects on highly 
magnified sources

MO & Takahashi PRD 106(2022)043532



Fluctuations for lensed sources
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• amplitude and phase fluctuations

4
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hS2

lm(f)i = hS2
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m(f)i, (30)

hS2

j (f)i =
Z

dk

(2⇡)2
P

j
(k)

⇥
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We find that the integrations over the polar angle in
the k-space can be performed using the Bessel function.
Specifically, by introducing the following quantities

A = r
2

F
k
2
/2, (32)

A
j,± = (µj,1 ± µj,2)r

2

F
k
2
/2, (33)

to simplify the expressions, Eqs. (29) and (31) reduce to

hK2

j (f)i =
Z

k dk

2⇡
P

j
(k)I

j
K , (34)

I
j
K =

1 � J0(Aj,�) cos(Aj,+)

2A2
, (35)

hS2

j (f)i =
Z

k dk
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P

j
(k)I

j
S , (36)

I
j
S =

3 � 4J0(Aj,�
/2) cos(Aj,+

/2) + J0(Aj,�) cos(Aj,+)

2A2
.

(37)

The amplitude shift Klm(f) is not observable from ob-
servations in a single frequency f because it degenerates
with the macro model magnification µ0. On the other
hand, even for observations in a single frequency, the
phase shift Slm(f) can in principle directly be observed
in a manner similar to the measurement of the Morse
phase (see e.g., [28]).

C. Frequency evolution of amplitude and phase

fluctuations

In previous work [5, 8], the frequency evolution of am-
plitude and phase fluctuations are considered as a means
of measuring the wave optics e↵ects. Here we consider
the evolution of Klm(f) and Slm(f) between frequencies
f1 and f2. Again, by assuming the statistical indepen-
dence between small-scale fluctuations around l-th and
m-th images, we can compute their dispersions as

h[Klm(f1) � Klm(f2)]
2i =h[Kl(f1) � Kl(f2)]

2i
+ h[Km(f1) � Km(f2)]

2i,
(38)

h[Slm(f1) � Slm(f2)]
2i =h[Sl(f1) � Sl(f2)]

2i
+ h[Sm(f1) � Sm(f2)]

2i. (39)

Writing

A1 = {rF(f1)}2 k2/2, (40)

A
j,±
1

= (µj,1 ± µj,2) {rF(f1)}2 k2/2, (41)

and similar quantities for f2 as A2 and A
j,±
2

, we find that
the integrations over the polar angle in the k-space can
be performed to obtain

h[Kj(f1) � Kj(f2)]
2i =

Z
k dk

2⇡
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j
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K , (42)
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We find that the integrations over the polar angle in
the k-space can be performed using the Bessel function.
Specifically, by introducing the following quantities

A = r
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The amplitude shift Klm(f) is not observable from ob-
servations in a single frequency f because it degenerates
with the macro model magnification µ0. On the other
hand, even for observations in a single frequency, the
phase shift Slm(f) can in principle directly be observed
in a manner similar to the measurement of the Morse
phase (see e.g., [28]).

C. Frequency evolution of amplitude and phase

fluctuations

In previous work [5, 8], the frequency evolution of am-
plitude and phase fluctuations are considered as a means
of measuring the wave optics e↵ects. Here we consider
the evolution of Klm(f) and Slm(f) between frequencies
f1 and f2. Again, by assuming the statistical indepen-
dence between small-scale fluctuations around l-th and
m-th images, we can compute their dispersions as
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We find that the integrations over the polar angle in
the k-space can be performed using the Bessel function.
Specifically, by introducing the following quantities

A = r
2

F
k
2
/2, (32)

A
j,± = (µj,1 ± µj,2)r

2

F
k
2
/2, (33)
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The amplitude shift Klm(f) is not observable from ob-
servations in a single frequency f because it degenerates
with the macro model magnification µ0. On the other
hand, even for observations in a single frequency, the
phase shift Slm(f) can in principle directly be observed
in a manner similar to the measurement of the Morse
phase (see e.g., [28]).

C. Frequency evolution of amplitude and phase

fluctuations

In previous work [5, 8], the frequency evolution of am-
plitude and phase fluctuations are considered as a means
of measuring the wave optics e↵ects. Here we consider
the evolution of Klm(f) and Slm(f) between frequencies
f1 and f2. Again, by assuming the statistical indepen-
dence between small-scale fluctuations around l-th and
m-th images, we can compute their dispersions as

h[Klm(f1) � Klm(f2)]
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be performed to obtain

h[Kj(f1) � Kj(f2)]
2i =

Z
k dk

2⇡
P

j
(k)I

j,12
K , (42)

h[Sj(f1) � Sj(f2)]
2i =

Z
k dk

2⇡
P

j
(k)I

j,12
S , (43)

where

I
j,12
K =

1 � J0(A
j,�
1

) cos(Aj,+
1

)

2A2

1

+
1 � J0(A

j,�
2

) cos(Aj,+
2

)

2A2

2

+
J0((A

j,�
1

+A
j,�
2

)/2) cos((Aj,+
1

+A
j,+
2

)/2)

A1A2

� J0((A
j,�
1

� A
j,�
2

)/2) cos((Aj,+
1

� A
j,+
2

)/2)

A1A2

, (44)

4

hK2

j (f)i =
Z

dk

(2⇡)2
P

j
(k)

⇥

sin(µj,1r

2

F
k
2

1
/2 + µj,2r

2

F
k
2

2
/2)

r
2

F
k2/2

�2

, (29)

hS2

lm(f)i = hS2

l (f)i + hS2

m(f)i, (30)

hS2

j (f)i =
Z

dk

(2⇡)2
P

j
(k)

⇥

cos(µj,1r

2

F
k
2

1
/2 + µj,2r

2

F
k
2

2
/2) � 1

r
2

F
k2/2

�2

.

(31)

We find that the integrations over the polar angle in
the k-space can be performed using the Bessel function.
Specifically, by introducing the following quantities

A = r
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The amplitude shift Klm(f) is not observable from ob-
servations in a single frequency f because it degenerates
with the macro model magnification µ0. On the other
hand, even for observations in a single frequency, the
phase shift Slm(f) can in principle directly be observed
in a manner similar to the measurement of the Morse
phase (see e.g., [28]).

C. Frequency evolution of amplitude and phase

fluctuations

In previous work [5, 8], the frequency evolution of am-
plitude and phase fluctuations are considered as a means
of measuring the wave optics e↵ects. Here we consider
the evolution of Klm(f) and Slm(f) between frequencies
f1 and f2. Again, by assuming the statistical indepen-
dence between small-scale fluctuations around l-th and
m-th images, we can compute their dispersions as

h[Klm(f1) � Klm(f2)]
2i =h[Kl(f1) � Kl(f2)]
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We find that the integrations over the polar angle in
the k-space can be performed using the Bessel function.
Specifically, by introducing the following quantities
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The amplitude shift Klm(f) is not observable from ob-
servations in a single frequency f because it degenerates
with the macro model magnification µ0. On the other
hand, even for observations in a single frequency, the
phase shift Slm(f) can in principle directly be observed
in a manner similar to the measurement of the Morse
phase (see e.g., [28]).

C. Frequency evolution of amplitude and phase

fluctuations

In previous work [5, 8], the frequency evolution of am-
plitude and phase fluctuations are considered as a means
of measuring the wave optics e↵ects. Here we consider
the evolution of Klm(f) and Slm(f) between frequencies
f1 and f2. Again, by assuming the statistical indepen-
dence between small-scale fluctuations around l-th and
m-th images, we can compute their dispersions as
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We find that the integrations over the polar angle in
the k-space can be performed using the Bessel function.
Specifically, by introducing the following quantities
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The amplitude shift Klm(f) is not observable from ob-
servations in a single frequency f because it degenerates
with the macro model magnification µ0. On the other
hand, even for observations in a single frequency, the
phase shift Slm(f) can in principle directly be observed
in a manner similar to the measurement of the Morse
phase (see e.g., [28]).

C. Frequency evolution of amplitude and phase

fluctuations

In previous work [5, 8], the frequency evolution of am-
plitude and phase fluctuations are considered as a means
of measuring the wave optics e↵ects. Here we consider
the evolution of Klm(f) and Slm(f) between frequencies
f1 and f2. Again, by assuming the statistical indepen-
dence between small-scale fluctuations around l-th and
m-th images, we can compute their dispersions as
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μ0 = μj,1μj,2

macro model magnification
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Enhanced signals
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Fresnel scale 
increased

peak is significantly
enhanced

• μ0 significantly modify kernel functions
    detection possible even for a few events
    in LIGO band!

ke
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Strongly lensed gravitational waves?
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time

MO MNRAS 480(2018)3842 

• even advanced LIGO can 
discover some events

• due to selection effect, 
those events have large μ 
and small Δt

Δt μ



Summary 
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• density fluctuations on the Fresnel scale (~pc) 
cause frequency-dependent amplitude and phase 
fluctuations

• expected signal is small (~10-3) for random line-of-
sight, but it can be significantly enhanced for 
strongly lensed, magnified events

• unique probe for dark matter subhalos, fuzzy dark 
matter (see also Kawai, MO+ ApJ 925(2022)61), PBHs, …


