Probing the very small scale dark matter distribution with gravitational waves

Masamune Oguri Center for Frontier Science, Chiba University

2024/2/8 seminar@UBB

Outstanding question

 what is the nature of dark matter and dark energy?
today's talk

Dark matter distribution

Dark matter (DM) at small-scale

Gravitational waves

Outline

- geometric optics vs. wave optics
- Born approximation
- amplitude and phase fluctuations of GWs

Geometric vs. wave optics

wave optics

geometric optics is used for almost all analysis of gravitational lensing

wave optics is more fundamental than geometric optics

e.g., <u>MO</u> RPP **82**(2019)126901, for a review

Geometric vs. wave optics

e.g., <u>MO</u> RPP **82**(2019)126901, for a review

Geometric vs. wave optics

Simplest case: point mass lens

*geometric optics at $w \rightarrow \infty$

Wave effect: diffraction

Wave effect: interference

 multiple light ray paths interfere (magnification oscillates as a func. of position/frequency)

Example

<u>MO</u> RPP **82**(2019)126901 (with modification)

Can wave effects be observed?

14

Difficulty

• highly oscillatory integral

 \rightarrow computationally expensive and unstable

$$\psi \propto \int d\theta \, e^{2\pi i f \Delta t(\theta)}$$

Integral equation

wave propagation in gravitational potential Φ

• solution given by an integral equation $\psi(x) = \psi_0(x) - 4\pi f^2 \int dx' \frac{e^{2\pi i f |x-x'|}}{|x-x'|} \Phi(x') \psi(x')$

Takahashi et al.A&A **438**(2005)L5

Born approximation

solution given by an integral equation

 $\psi(\mathbf{x}) = \psi_0(\mathbf{x}) - 4\pi f^2 \int d\mathbf{x}' \frac{e^{2\pi i f |\mathbf{x} - \mathbf{x}'|}}{|\mathbf{x} - \mathbf{x}'|} \Phi(\mathbf{x}') \psi(\mathbf{x}')$

first order approximation solution

$$\psi(\mathbf{x}) = \psi_0(\mathbf{x}) - 4\pi f^2 \int d\mathbf{x}' \frac{e^{2\pi i f |\mathbf{x} - \mathbf{x}'|}}{|\mathbf{x} - \mathbf{x}'|} \Phi(\mathbf{x}') \psi_0(\mathbf{x}')$$

(See e.g., Mizuno & Suyama 2023 for the validity of Born approximation)

Solution in Born approximation

$$\frac{\psi}{\psi_0} = 1 - 4\pi f^2 \int d\chi \int d\mathbf{r} \frac{\chi_s}{\chi(\chi_s - \chi)} \Phi(\mathbf{x}) e^{2\pi i f \Delta t_g}$$
$$\Delta t_g = \frac{\chi_s}{2\chi(\chi_s - \chi)} \left| \mathbf{r} - \frac{\chi}{\chi_s} \mathbf{r}_s \right|^2 = \frac{\chi_s}{2\chi(\chi_s - \chi)} \left| \mathbf{r} - \mathbf{r}_\perp \right|^2$$

Fresnel diffraction in optics

Fresnel scale

Probing small-scale DM distribution?? (Macquart 2004;Takahashi+2005;Takahashi 2006; ...)

Observables: amplitude/phase shift

connection with deformation of observed waveform

amplitude shift =
$$\operatorname{Re}\left(\frac{\psi}{\psi_0}\right)$$

phase shift = Im
$$\left(\frac{\psi}{\psi_0}\right)$$

$$\psi_0$$
 ψ_0 ψ_0

Takahashi ApJ **644**(2006)80; <u>MO</u> & Takahashi ApJ **901**(2020)58

Amplitude and phase fluctuations

 Born approximation to connect amplitude and phase fluctuations with matter power spectrum P(k)

• can be measured using **frequency evolution**

P(k) at pc scale??

<u>MO</u> & Takahashi ApJ **901** (2020)58

P(k) at very high k

<u>MO</u> & Takahashi ApJ **901** (2020)58

Expected signal

signal small, need many (~105) GWs for detection!

<u>MO</u> & Takahashi ApJ **901** (2020)58

Primordial black hole (рвн) scenario

Prospect?

- expected amplitude and phase fluctuations for random line-of-sight are small (~10-3)
- need to combine large number of events for detection, which is challenging
- any cleverer way?

<u>MO</u> & Takahashi PRD **106**(2022)043532

Wave effects for lensed sources

- strong lensing by a massive lens, for which geometric optics is valid
- small-scale density perturbations that produce perturbative wave optics effects on highly magnified sources

<u>MO</u> & Takahashi PRD **106**(2022)043532

Fluctuations for lensed sources

amplitude and phase fluctuations

$$\begin{split} \langle K_{j}^{2}(f) \rangle &= \int \frac{k \, dk}{2\pi} \, P_{\kappa}^{j}(k) \frac{\frac{1 - J_{0}(A^{j,-}) \cos(A^{j,+})}{2A^{2}}}{\frac{k \, ernel}{kernel}} \\ \langle S_{j}^{2}(f) \rangle &= \int \frac{k \, dk}{2\pi} \, P_{\kappa}^{j}(k) \frac{3 - 4J_{0}(A^{j,-}/2) \cos(A^{j,+}/2) + J_{0}(A^{j,-}) \cos(A^{j,+})}{2A^{2}} \\ phase \\ A &= r_{\mathrm{F}}^{2} k^{2}/2 \qquad A^{j,\pm} = (\mu_{j,1} \pm \mu_{j,2}) r_{\mathrm{F}}^{2} k^{2}/2 \end{split}$$

macro model magnification $\mu_0 = \mu_{j,1} \mu_{j,2}$

MO & Takahashi PRD 106(2022)043532

Enhanced signals

 µ₀ significantly modify kernel functions
detection possible even for a few events in LIGO band!

<u>MO</u> MNRAS **480**(2018)3842

Strongly lensed gravitational waves?

- even advanced LIGO can discover some events
- due to selection effect, those events have large μ and small Δt

Summary

- density fluctuations on the Fresnel scale (~pc) cause frequency-dependent amplitude and phase fluctuations
- expected signal is small (~10⁻³) for random line-ofsight, but it can be significantly enhanced for strongly lensed, magnified events
- unique probe for dark matter subhalos, fuzzy dark matter (see also Kawai, <u>MO</u>+ ApJ **925**(2022)61), PBHs, ...