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• A.G. Riess et al., Observational Evidence from Supernovae for an Accelerating
Universe and a Cosmological Constant, Astron. J. 116, 1009 (1998)

• S. Perlmutter . et al., Measurements of Ω and Λ from 42 High-Redshift Supernovae,
Astrophys. J.. 517, 565 (1999)

• The first observational evidence for the accelerated expansion of the universe
• along with this remarkable achievement, there are many questions arise for the
research community to look forward to, such as

1. cosmological constant (Λ)
2. dark energy
3. dark matter
4. and many more related to GR
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Mathematical Foundations

• The Mathematical framework of gravitational theories based on various
assumptions

1. a manifold (M)
2. a metric structure (g)
3. a connection (Γ)

• In differential geometry, the affine connection is defined as

Γλµν = {λµν}+ Kλ
µν + Lλµν

here, {λµν} → Levi-Civita connection, Kλ
µν → contortion, Lλµν → nonmetricity

tensor



Overviews The f (Q) Cosmological Model Observational Constraints Cosmological Applications Summary

Mathematical Foundations

• The Mathematical framework of gravitational theories based on various
assumptions

1. a manifold (M)

2. a metric structure (g)
3. a connection (Γ)

• In differential geometry, the affine connection is defined as

Γλµν = {λµν}+ Kλ
µν + Lλµν

here, {λµν} → Levi-Civita connection, Kλ
µν → contortion, Lλµν → nonmetricity

tensor



Overviews The f (Q) Cosmological Model Observational Constraints Cosmological Applications Summary

Mathematical Foundations

• The Mathematical framework of gravitational theories based on various
assumptions

1. a manifold (M)
2. a metric structure (g)

3. a connection (Γ)

• In differential geometry, the affine connection is defined as

Γλµν = {λµν}+ Kλ
µν + Lλµν

here, {λµν} → Levi-Civita connection, Kλ
µν → contortion, Lλµν → nonmetricity

tensor



Overviews The f (Q) Cosmological Model Observational Constraints Cosmological Applications Summary

Mathematical Foundations

• The Mathematical framework of gravitational theories based on various
assumptions

1. a manifold (M)
2. a metric structure (g)
3. a connection (Γ)

• In differential geometry, the affine connection is defined as

Γλµν = {λµν}+ Kλ
µν + Lλµν

here, {λµν} → Levi-Civita connection, Kλ
µν → contortion, Lλµν → nonmetricity

tensor



Overviews The f (Q) Cosmological Model Observational Constraints Cosmological Applications Summary

Mathematical Foundations

• The Mathematical framework of gravitational theories based on various
assumptions

1. a manifold (M)
2. a metric structure (g)
3. a connection (Γ)

• In differential geometry, the affine connection is defined as

Γλµν = {λµν}+ Kλ
µν + Lλµν

here, {λµν} → Levi-Civita connection, Kλ
µν → contortion, Lλµν → nonmetricity

tensor



Overviews The f (Q) Cosmological Model Observational Constraints Cosmological Applications Summary

• GR: Metric compatible Qαµν = 0, torsion free Tα
µν = 0, and Levi-Civita

connection

• TEGR: Rβ
αµν = 0, Qαµν = 0 and contortion

• STEGR: Rβ
αµν = 0, Tα

µν = 0 and nonmetricity tensor

These three theories called Geometric trinity of gravity. Apart from these there are
many more gravitational theories developed in the literature
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Einstein’s theory of general relativity

”matter tells spacetime how to curve, and curved spacetime tells matter how to move”

The Einstein field equations can derived from the following action

S =
1

2k2

∫
R
√
−gd4x +

∫
Lm(g , χ,∇χ)

√
−gd4x , (1)

where R is the Ricci scalar, g represents the determinant of the metric gµν , and Lm is
the matter Lagrangian density,

√
−gd4x is the volume element, k is gravitational

coupling constant, χ is the matter field
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The f (Q) Cosmological Model

• The standard Friedmann-Lemaitre-Robertson-Walker line element, which describes
our flat, homogeneous, and isotropic Universe, is given by,

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2). (2)

Here t is the cosmic time, and x , y , z denote the Cartesian co-ordinates, a(t) is
the scale factor

• We consider the matter content of the Universe as consisting of a perfect and
isotropic fluid, with energy-momentum tensor given by

Tµν = (p + ρ)uµuν + pgµν , (3)

where p and ρ are the pressure and the energy density of the fluid, uµ is the
four-velocity vector normalized according to uµuµ = −1
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• Now, we introduce the action for the f (Q) gravity theory, given by 1,

S =

∫ [
1

2
f (Q) + Lm

]√
−gd4x , (4)

where f (Q) is a general function of the non-metricity scalar Q, (Q = 6H2 for
FLRW metric)

• we know, f (Q) = Q retrieves GR

Q + Λ = Q + F (Q)

=⇒ Λ = F (Q) = F (Q) = 6γ H2
0

(
Q
Q0

)n
,

1J. B. Jimenez et al. Coincident general relativity, Phys. Rev. D 98, 044048, (2018)



Overviews The f (Q) Cosmological Model Observational Constraints Cosmological Applications Summary

• Now, we introduce the action for the f (Q) gravity theory, given by 1,

S =

∫ [
1

2
f (Q) + Lm

]√
−gd4x , (4)

where f (Q) is a general function of the non-metricity scalar Q, (Q = 6H2 for
FLRW metric)

• we know, f (Q) = Q retrieves GR

Q + Λ = Q + F (Q)

=⇒ Λ = F (Q) = F (Q) = 6γ H2
0

(
Q
Q0

)n
,

1J. B. Jimenez et al. Coincident general relativity, Phys. Rev. D 98, 044048, (2018)



Overviews The f (Q) Cosmological Model Observational Constraints Cosmological Applications Summary

• Now, we introduce the action for the f (Q) gravity theory, given by 1,

S =

∫ [
1

2
f (Q) + Lm

]√
−gd4x , (4)

where f (Q) is a general function of the non-metricity scalar Q, (Q = 6H2 for
FLRW metric)

• we know, f (Q) = Q retrieves GR

Q + Λ

= Q + F (Q)

=⇒ Λ = F (Q) = F (Q) = 6γ H2
0

(
Q
Q0

)n
,

1J. B. Jimenez et al. Coincident general relativity, Phys. Rev. D 98, 044048, (2018)



Overviews The f (Q) Cosmological Model Observational Constraints Cosmological Applications Summary

• Now, we introduce the action for the f (Q) gravity theory, given by 1,

S =

∫ [
1

2
f (Q) + Lm

]√
−gd4x , (4)

where f (Q) is a general function of the non-metricity scalar Q, (Q = 6H2 for
FLRW metric)

• we know, f (Q) = Q retrieves GR

Q + Λ = Q + F (Q)

=⇒ Λ = F (Q) = F (Q) = 6γ H2
0

(
Q
Q0

)n
,

1J. B. Jimenez et al. Coincident general relativity, Phys. Rev. D 98, 044048, (2018)



Overviews The f (Q) Cosmological Model Observational Constraints Cosmological Applications Summary

• Now, we introduce the action for the f (Q) gravity theory, given by 1,

S =

∫ [
1

2
f (Q) + Lm

]√
−gd4x , (4)

where f (Q) is a general function of the non-metricity scalar Q, (Q = 6H2 for
FLRW metric)

• we know, f (Q) = Q retrieves GR

Q + Λ = Q + F (Q)

=⇒ Λ = F (Q) = F (Q) = 6γ H2
0

(
Q
Q0

)n
,

1J. B. Jimenez et al. Coincident general relativity, Phys. Rev. D 98, 044048, (2018)



Overviews The f (Q) Cosmological Model Observational Constraints Cosmological Applications Summary

The Friedmann equations becomes

3H2 = ρr + ρm + ρde , (5)

2Ḣ + 3H2 = −ρr
3

− pm − pde , (6)

where ρr , ρm, and pm are the energy densities of the radiation and matter components,
pm is the matter pressure, while ρde and pde are the DE’s density and pressure
contribution due to the geometry, given by

ρde =
F

2
− Q FQ , (7)

pde = 2Ḣ(2QFQQ + FQ)− ρde . (8)
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• When there are no interactions between the three fluids, the energy densities
satisfy the following differential equations

ρ̇r + 4Hρr = 0, (9)

ρ̇m + 3Hρm = 0, (10)

ρ̇de + 3H(1 + ωde)ρde = 0. (11)

• The simplest form of the CPL model can be written as,

ωde(z) = ω0 + ωa
z

1 + z
. (12)
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• Using equation (11) and (12)/ pde = ωdeρde , we can find

H2(z) = H2
0 (1 + z)

3(1+ωo+ωa)
n e

− 3ωaz
n(1+z) (13)

• Now, we can easily calculate ρde as

ρde(z) = 3γ (1− 2n)H2
0 (1 + z)3(1+ωo+ωa)e

−3ωaz
(1+z) . (14)

• From first Friedmann equation, we can find

H2(z)

H2
0

= Ωr0(1 + z)4 +Ωm0(1 + z)3 + γ (1− 2n)(1 + z)3(1+ωo+ωa)e
−3ωaz
(1+z) (15)

free parameters to be constraint θs = (γ, n, ω0, ωa,H0,Ωm0)
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Observational Constraints

• Cosmic Chronometer (CC) Dataset: Here, we have used 31 Hubble samples in
the redshift range 0.07 < z < 2.42 2. The chi-square function is defined to find
the constraint values of the parameters γ, n, ω0, ωa,H0,Ωm0

χ2
CC =

31∑
i=1

[Hth
i (θs , zi )− Hobs

i (zi )]
2

σ2
CC (zi )

(16)

where Hobs
i denotes the observed value, Hth

i denotes the Hubble’s theoretical value,
σzi denotes the standard error in the observed value and θs = (γ, n, ω0, ωa,H0,Ωm0)
is the cosmological background parameter space

2S. Mandal et al., H0 tension in torsion-based modified gravity, Nuclear Physics B 993, 116285
(2023)
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• Type Ia Supernovae:Here have used Pantheon+ compilation of 1701 points in the
redshift range 0.002122 < z < 2.26137, which integrates Super-Nova samples3.
The chi-square function is defined as,

χ2
SNa =

1701∑
i ,j=1

▽µi

(
C−1
SN

)
ij
▽ µj , (17)

Here CSNa is the covariance matrix and ▽µi = µth(zi , θ)− µobs
i is the difference

between the observed value of distance modulus extracted from the cosmic obser-
vations and its theoretical values calculated from the model with given parameter
space θ. µth

i and µobs
i are the theoretical and observed distance modulus respec-

tively.

3D.M. Scolnic et al,, The Pantheon+ Analysis: The Full Data Set and Light-curve Release, ApJ
938 113 (2022)
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Figure: The dark orange shaded regions present the 1− σ confidence level (CL), and the light
orange shaded regions present the 2− σ confidence level for the Hubble sample.
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Figure: The red line represents the Hubble parameter profile of the power-law model f (Q)
model with the constraint values of H0,Ωm0, ω0, ωa, n, γ. The blue dots with the green bars
represent the CC sample, and the black dotted line represents the Hubble parameter profile of
the ΛCDM model.
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Figure: The blue line represents the distance modulus profile of the power-law f (Q) model with
the constraint values of H0,Ωm0, ω0, ωa, n, γ. The blue dots with the green bars represent the
Pantheon+SHOES sample, and the black dotted line represents the distance modulus profile of
the ΛCDM model.
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4
4E. Valentino, et al., Cosmology Intertwined, arXiv:2203.06142
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Information Criteria and Model Selection Analysis

AIC = −2 ln (Lmax) + 2k +
2k (k + 1)

Ntot − k − 1
,BIC = −2 ln (Lmax) + k log(Ntot), (18)
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Constraint on cosmographic Parameters
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Dimensionless density parameters
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Profiles of the parameter of the energy densities as functions the redshift variable z for
the constraint values of H0,Ωm0, ω0, ωa, n, γ for the CC, Pantheon+SHOES, and

CC+Pantheon+SHOES samples.
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Om Diagnostics

For the spatially flat Universe, it is defined as5

Om(x) =
H(x)2 − 1

(1 + z)3 − 1
, x = 1 + z ,H(x) = H(x)/H0, (19)

For x1 < x2,

• Om(x1, x2) ≡ Om(x1)− Om(x2) = 0 in
ΛCDM,

• Om(x1, x2) ≡ Om(x1)− Om(x2) < 0 in
phantom models,

• Om(x1, x2) ≡ Om(x1)− Om(x2) > 0 in
quintessence cosmology
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Figure: Profiles of the Om
diagnostic parameter as a
function of 1 + z

5Varun Sahni, Arman Shafieloo, and Alexei A. Starobinsky, PRD 78, 103502 (2008).
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Summary

• We discussed the Mathematical foundations of modified theories of gravity

• we discussed the accelerated expansion through the geometrical dark energy,
which is alternative approaches to the ΛCDM model

• we confronted our model with observational measurements

• we discussed various cosmological applications

Future perspectives:

• What could be the ideal number of free parameters for a cosmological model

• To look for new physics/ gravitational theory to minimize the cosmological
tensions

• What could be the future of modified theories of gravity?
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Cosmological observational constraints on the power law f (Q) type modified gravity
theory, EPJC 83 (12), 1141 (2023). arXiv:2310.00030
with S. Pradhan, P.K. Sahoo, Tiberiu Harko

Thank you so much for your kind attention!
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