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® A.G. Riess et al., Observational Evidence from Supernovae for an Accelerating
Universe and a Cosmological Constant, Astron. J. 116, 1009 (1998)
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4. and many more related to GR
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® The Mathematical framework of gravitational theories based on various
assumptions
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Mathematical Foundations

® The Mathematical framework of gravitational theories based on various
assumptions

1. a manifold (M)
2. a metric structure (g)
3. a connection (I')

® |n differential geometry, the affine connection is defined as

rjw — {AW} + Kﬁ\u + Li‘w

Summary
(e]e)

here, {*,,} — Levi-Civita connection, K/jy — contortion, L/’)V — nonmetricity

tensor
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connection

® GR: Metric compatible Q. = 0, torsion free T/f‘,/ = 0, and Levi-Civita
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® GR: Metric compatible Q. = 0, torsion free Tﬁ‘u = 0, and Levi-Civita
connection

¢ TEGR: Rgu,, =0, Quu = 0 and contortion
e STEGR: Rg,w =0, Tﬁ‘y = 0 and nonmetricity tensor

These three theories called Geometric trinity of gravity. Apart from these there are
many more gravitational theories developed in the literature
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Einstein's theory of general relativity

"matter tells spacetime how to curve, and curved spacetime tells matter how to move”
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Einstein's theory of general relativity

"matter tells spacetime how to curve, and curved spacetime tells matter how to move”

The Einstein field equations can derived from the following action

S= 2 /R\/ gd*x + /E g, %, Vx)vV—gd*x, (1)
where R is the Ricci scalar, g represents the determinant of the metric g,,,,, and L, is
the matter Lagrangian density, \/—gd®x is the volume element, k is gravitational
coupling constant, x is the matter field
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The f(Q) Cosmological Model

® The standard Friedmann-Lemaitre-Robertson-Walker line element, which describes
our flat, homogeneous, and isotropic Universe, is given by,

ds? = —dt? + a%(t)(dx? + dy? + dz?). (2)

Here t is the cosmic time, and x, y, z denote the Cartesian co-ordinates, a(t) is
the scale factor
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The f(Q) Cosmological Model

® The standard Friedmann-Lemaitre-Robertson-Walker line element, which describes
our flat, homogeneous, and isotropic Universe, is given by,

ds? = —dt? + a%(t)(dx? + dy? + dz?). (2)

Here t is the cosmic time, and x, y, z denote the Cartesian co-ordinates, a(t) is
the scale factor

® We consider the matter content of the Universe as consisting of a perfect and
isotropic fluid, with energy-momentum tensor given by

T,uzx = (P + p)uuu,, + P8uv; (3)

where p and p are the pressure and the energy density of the fluid, v, is the
four-velocity vector normalized according to v#u, = —1
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® Now, we introduce the action for the f(Q) gravity theory, given by 1,
1
5= [ [3rt@+ o] v=geix (@

where f(Q) is a general function of the non-metricity scalar Q, (Q = 6H? for
FLRW metric)

1J. B. Jimenez et al. Coincident general relativity, Phys. Rev. D 98, 044048, (2018)
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® Now, we introduce the action for the f(Q) gravity theory, given by 1,
1
5= [ [3rt@+ o] v=geix (@

where f(Q) is a general function of the non-metricity scalar Q, (Q = 6H? for
FLRW metric)

® we know, f(Q) = Q retrieves GR

Q+A

1J. B. Jimenez et al. Coincident general relativity, Phys. Rev. D 98, 044048, (2018)
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® Now, we introduce the action for the f(Q) gravity theory, given by 1,
1
5= [ [3rt@+ o] v=geix (@

where f(Q) is a general function of the non-metricity scalar Q, (Q = 6H? for
FLRW metric)

® we know, f(Q) = Q retrieves GR

Q+A=Q+F(Q)

1J. B. Jimenez et al. Coincident general relativity, Phys. Rev. D 98, 044048, (2018)
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® Now, we introduce the action for the f(Q) gravity theory, given by 1,
1
5= [ [3rt@+ o] v=geix (@

where f(Q) is a general function of the non-metricity scalar Q, (Q = 6H? for
FLRW metric)

® we know, f(Q) = Q retrieves GR

Q+A=Q+F(Q)

— A=F(Q) =F(@Q =61+ (&)

1J. B. Jimenez et al. Coincident general relativity, Phys. Rev. D 98, 044048, (2018)
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The Friedmann equations becomes

3H? = pr + Pm + Pde, (5)
2H+3H2:*%*mepde, (6)

where p,, pm, and p., are the energy densities of the radiation and matter components,
pm is the matter pressure, while pge and pge are the DE's density and pressure
contribution due to the geometry, given by

F
pde = 5 = Q Fo, (7)

poe = 2H(2QFqq + FQ) — poe- (8)
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® When there are no interactions between the three fluids, the energy densities
satisfy the following differential equations

pr+4Hp, = 0, 9)
pm +3Hpm = 0, (10)
pde + 3H(]- + wde)pde = 0. (1]-)
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® When there are no interactions between the three fluids, the energy densities
satisfy the following differential equations

pr+4Hp, = 0, 9)
pm +3Hpm = 0, (10)
pde + 3H(]- + wde)pde =0 (1]-)

® The simplest form of the CPL model can be written as,

wde(z) :wo_’_wal—l—z.

(12)
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® Using equation (11) and (12)/ pde = Wdepde, We can find

3(1twotws) _ 3waz

H*(z) = Hg(1+z)~ » e it (13)
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® Using equation (11) and (12)/ pde = Wdepde, We can find

3(1+wo+wa) 3waz

H2(z) = Hg(l +z) n e n(i+z)

® Now, we can easily calculate pge as

—3wgaz

pae(z) = 37 (1 — 2n)H3 (1 + z)3(Hwotwa) o Ty |

(13)

(14)

Summary
o]

o
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® Using equation (11) and (12)/ pde = Wdepde, We can find

3(1+wo+wa) 3waz

H2(z) = Hg(l +z) n e n(i+z)

® Now, we can easily calculate pge as

—3wgaz

pae(z) = 37 (1 — 2n)H3 (1 + z)3(Hwotwa) o Ty |

® From first Friedmann equation, we can find

H*(2)
Hg

—3waz

= Qro(1+ 2)* 4+ Qumo(1 + 2)% + 7 (1 — 2n)(1 4 z)3(Hwotwa) g Tr2)

Summary
(e]e)

(13)

(14)

(15)
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® Using equation (11) and (12)/ pde = Wdepde, We can find

3(1+wo+wa) 3waz

H?(z) = H3(14+2)" e %) 13
0
® Now, we can easily calculate pge as
—3wgaz
pae(2) = 37 (1 — 2n)H3(L + 2)3( et T (14)

® From first Friedmann equation, we can find

—3waz

H2
) Q01+ 2)* + Qo1+ 2% + 7 (1 — 20)(1 + 220 T (15)

Hg

free parameters to be constraint 6; = (v, n, wo,wa, Ho, 2mo)
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Observational Constraints

¢ Cosmic Chronometer (CC) Dataset: Here, we have used 31 Hubble samples in
the redshift range 0.07 < z < 2.42 2. The chi-square function is defined to find
the constraint values of the parameters ~, n, wg, wa, Ho, Qmo

3L [HE(0s, 27) — HOPS ()2

Xec =),

i=1 occ()

(16)

where H,f’bs denotes the observed value, H,-th denotes the Hubble's theoretical value,
04, denotes the standard error in the observed value and 65 = (7, n, wo, wa, Ho, 2mo)
is the cosmological background parameter space

2S. Mandal et al., Hy tension in torsion-based modified gravity, Nuclear Physics B 993, 116285
(2023)
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® Type la Supernovae:Here have used Pantheon+ compilation of 1701 points in the
redshift range 0.002122 < z < 2.26137, which integrates Super-Nova samples3.
The chi-square function is defined as,

1701
Xana = > Vi (Con) 3 V 1, (17)
ij=1
Here Csp, is the covariance matrix and  <7u; = utf(z;, 0) — 9 is the difference

between the observed value of distance modulus extracted from the cosmic obser-
vations and its theoretical values calculated from the model with given parameter
space 6. uf and u"bs are the theoretical and observed distance modulus respec-
tively.

3D.M. Scolnic et al,, The Pantheon+ Analysis: The Full Data Set and Light-curve Release, ApJ
938 113 (2022)
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Figure: The dark orange shaded regions present the 1 — o confidence level (CL), and the light
orange shaded regions present the 2 — o confidence level for the Hubble sample.
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Figure: The red line represents the Hubble parameter profile of the power-law model f(Q)
model with the constraint values of Hy, Qm0, wo,wa, n,7y. The blue dots with the green bars
represent the CC sample, and the black dotted line represents the Hubble parameter profile of
the ACDM model.
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Figure: The dark blue shaded regions present the 1 — o confidence level (CL), and light blue
shaded regions present the 2 — o confidence level for the Pantheon+ sample.
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— Powerlaw model | PR
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Figure: The blue line represents the distance modulus profile of the power-law f(Q) model with
the constraint values of Hy, Qmo, wo,wa, n,7y. The blue dots with the green bars represent the
Pantheon+SHOES sample, and the black dotted line represents the distance modulus profile of
the ACDM model.
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Figure: The dark-shaded regions present the 1 — o confidence level (CL), and the light-shaded
regions present the 2 — o confidence level for the Hubble+Pantheon sample.
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TABLE II. Marginalized constrained data of the parameters Ho, Qmo, wo, wa, 7y and 1 for different data samples with 68% and

95% confidence level.

Model Hy Omo wp wg n ¥
68% limits
CC sample
ACDM  68.80+094 03180034 - - -
Power-law 71594054 0.292 +0.020 —1.005 £0.090 —0.00996 £ 0.0010 —0.361240.0010  0.369 & 0.046
Pantheon+SHOES sample
ACDM 72334028 0.383+0.022 - - -
Power-law 7173370082 0.1899 £ 0.0069 —1.005 £ 0.010 —0.01003951) 03616 £ 0.0010 0.4627 = 0.0063
CC+Pantheon+SHOES sample
ACDM 72,66 026 0.342+0.019 - - - -
Power-law 71547081, 0.1971 £ 0.0068 —1.0284 - 0.0096 —0.01817908,  —0.343:£0.010 0.4871 £ 0.0098

ACDM 688719
Power-law 716710

ACDM  723300%
Power-law 71.73fg:}g

ACDM 7266103
Power-law  71.54701)

-0.068
Pt
0.202+0%40

+0.044
0.3837008

+0.013
019075013

0.038
ooy
019775014

95% limits
CC sample

+0.18
—L100Z3s

Pantheon+SHOES sample

+0.020
—1005Z51

CC+Pantheon+SHOES sample

0.020
- 1'028:\ 018

+0.0020
~0.0099630020

—0.010010-0022

+0.0020 +0.094
—03612%5000  0-369Z5089
+0.0020 +0.012
—0.3616T 5019 046375015

—0.018+0017 —0.34355318

048779920

0.020
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B with Planck
Aghanim et al. (2020), Planck 2018: 67.27 = 0.60
7 et al. (2020), Planck 2018+CMB lensing: 67.36 = 0.54
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019724220
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Pesce et al. (2020): 7394 3.0
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Surface Brightness Fluctuations
Blakeslee et al. (2021) IR-SBF w/ HST: 73.342.5
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Millon et al. (2020), TDCOSMO: 74.2% 1.6
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Information Criteria and Model Selection Analysis

2k (k +1)

=21 x 2k + ——————
B T

,BIC = —2In(Lmax) + klog(Niot), (18)

TABLE III. The corresponding X,an of the models for each sample and the information criteria AIC, BIC for the examined cosmo-
logical models, along with the corresponding differences AIC,,0401 = ICynoder — ICimin-

Model i red. x AIC A AIC BIC A BIC
cC

ACDM 16.07 0.64 20.07 0 2293 0

Power-law 16.06 0.64 28.06 7.98 36.66 13.72
Pantheon+SHOES

ACDM 1696.84 1.0 1700.84 0 1719.15 0

Power-law 1683.20 099 1695.20 5.63 1727.83 8.6
CC+Pantheon+SHOES

ACDM 17129 1.0 1716.90 0 173528 0

Power-law 1699.33 0.99 1711.33 5.5 1744.07 8.79
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Constraint on cosmographic Parameters

S
o

TABLE IV. Present-day values of the cosmological parameters gy, jo, Sp and Q). as predicted by the power law f(Q) model for
different data samples with 68% confidence level.

Power-law

+0.015
—0.7447 5 01

+0.023
1'0670.058

Model 0 Jo S0 Queo
CC sample

ACDM —0.523 4 0.0345 14 (< 0(107%)) —0.431£0.1035 0.682 £ 0.034

Power-law 053215977 100110228 —0.4391 53¢ 06850019
Pantheon+SHOES sample

ACDM —0.4255 £ 0.033 14 (< 0(1071)) —0.7235 £ 0.099 0.617 £0.022

Power-law —0.717:0017 1.006:+0:-053 01081007 08076199557
CC+Pantheon+SHOES sample
ACDM —0.487 4 0.0285 1+ (< 0(1071%)) —0.539 £ 0.0855 0.658 +0.019

+0.011
0.19875 413

0.0024
0.806410002¢
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Dimensionless density parameters
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Profiles of the parameter of the energy densities as functions the redshift variable z for
the constraint values of Hy, Qpmo, wo,wa, n,y for the CC, Pantheon4+SHOES, and
CC+Pantheon+SHOES samples.
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Om Diagnostics

%Varun Sahni, Arman Shafieloo, and Alexei A. Starobinsky, PRD 78, 103502 (2008).
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Om Diagnostics

For the spatially flat Universe, it is defined as®

H(x)? -1

Om(x) = m

,x =14z, H(x) = H(x)/Ho,

%Varun Sahni, Arman Shafieloo, and Alexei A. Starobinsky, PRD 78, 103502 (2008).
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Om Diagnostics

For the spatially flat Universe, it is defined as®

O _
Om(X) = m,x = ]. +Z,H(X) = H(X)/H()7
For X1 < Xp,
® Om(x1,x2) = Om(x1) — Om(x2) =0 in
ACDM,

® Om(xy,x2) = Om(x1) — Om(x2) < 0 in
phantom models,

® Om(xy,x2) = Om(x1) — Om(x2) > 0 in
guintessence cosmology

%Varun Sahni, Arman Shafieloo, and Alexei A. Starobinsky, PRD 78, 103502 (2008).
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Om Diagnostics

For the spatially flat Universe, it is defined as®

H(x)? -1
Om(X) = m,x = ]. +Z,H(X) = H(X)/H()7
For X1 < Xp, ::

® Om(x1,x2) = Om(x1) — Om(x2) =0 in S s
/\ C D M ’ 06 _ :zcnmeomSHOES

® Om(xy,x2) = Om(x1) — Om(x2) < 0 in e Lscc’mm;::’ws 25
phantom models, e

® Om(x1,x2) = Om(x1) — Om(x2) > 0 in Figure: Profiles of the Om
guintessence cosmology diagnostic parameter as a

function of 1 + z

%Varun Sahni, Arman Shafieloo, and Alexei A. Starobinsky, PRD 78, 103502 (2008).
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which is alternative approaches to the ACDM model

we confronted our model with observational measurements

we discussed various cosmological applications

Future perspectives:

What could be the ideal number of free parameters for a cosmological model
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Summary

® We discussed the Mathematical foundations of modified theories of gravity

® we discussed the accelerated expansion through the geometrical dark energy,
which is alternative approaches to the ACDM model

® we confronted our model with observational measurements
® we discussed various cosmological applications
Future perspectives:
® What could be the ideal number of free parameters for a cosmological model

® To look for new physics/ gravitational theory to minimize the cosmological
tensions
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Summary

® We discussed the Mathematical foundations of modified theories of gravity

® we discussed the accelerated expansion through the geometrical dark energy,
which is alternative approaches to the ACDM model

® we confronted our model with observational measurements
® we discussed various cosmological applications
Future perspectives:
® What could be the ideal number of free parameters for a cosmological model

® To look for new physics/ gravitational theory to minimize the cosmological
tensions

® What could be the future of modified theories of gravity?
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Cosmological observational constraints on the power law f(Q) type modified gravity
theory, EPJC 83 (12), 1141 (2023). arXiv:2310.00030
with S. Pradhan, P.K. Sahoo, Tiberiu Harko
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Cosmological observational constraints on the power law f(Q) type modified gravity
theory, EPJC 83 (12), 1141 (2023). arXiv:2310.00030
with S. Pradhan, P.K. Sahoo, Tiberiu Harko

Thank you so much for your kind attention!
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