Hidden Conformal Symmetry for
 Dyonic Kerr-Sen Black Hole and Its Gauged Family

Muhammad Fitrah Alfian Rangga Sakti

High Energy Physics Theory Group
Department of Physics, Chulalongkorn University, Thailand

Chula
Chulalongkorn University
Published in Eur. Phys. J. C 83, 255 (2023).

March 2024

Outline

(1) Background
(2) Objectives
(3) Hidden Conformal Symmetry of DKS BH

4 Hidden Conformal Symmetry of DKSAdS BH
(5) Absorption Cross-section DKS BH
(6) Absorption Cross-section DKSAdS BH
(7) Conclusions

Background

Background

AdS and CFT?

AdS/CFT correspondence claims

Strongly-coupled 4-dimensional gauge theory $=$ Gravitational theory in 5-dimensional AdS spacetime
or more general
($N-1$)-dimensional quantum field theory $=N$-dimensional gravitational theory
AdS/CFT also claims

$$
Z_{\text {gauge }}=Z_{\text {AdS }}
$$

Background

Why does 5D gravitational theory correspond to 4D field theory?
Intuitive answer can be seen using a black hole (BH).

- BH \rightarrow thermal system at finite temperature \rightarrow entropy.
- $S_{B H} \sim A / 4$ (area), different with statistical entropy $S \sim V$.
- Yet, A in N dimension is V in $(N-1)$ dimension.
- This implies:

BH lives in 5D (AdS), yet can be portrayed by 4D field theory.

Background

Why do we study BH thermodynamics using AdS/CFT?
We want to relate $S_{B H}$ (gravity) with quantum theory.

- Thermodynamic laws of black hole were derived originally by comparing the quantities in the common thermodynamic laws with BH's properties,

$$
\text { (statistical) } T d S=d E+P d V \quad \text { (BH) } T_{H} d S_{B H}=d M+\Omega d J
$$

- The problem of quantum gravity is not completely solved.
- However, Z in quantum field theory is already well-identified.
- AdS/CFT correspondence is used to study the origin $S_{B H}$ of BH using Z from CFT.

Background

Which CFT? 2D CFT.

- Entropy of the black holes satisfies

$$
S_{B H}=\frac{A}{4},
$$

- $S_{\text {CFT }}$ is Cardy formula from 2D CFT, defined by

$$
S_{C F T}=\frac{\pi^{2}}{3}\left(c_{L} T_{L}+c_{R} T_{R}\right)
$$

- $C_{L, R}$ are central charges appearing in Virasoro algebra and $T_{L, R}$ are temperatures.
- In first paper of Kerr/CFT (Guica, Hartman, Song, Strominger, PRD'09), it is shown for extremal Kerr that $S_{C F T}=S_{B H}$.

Background

Absorption cross-section

- In 2D CFT, absorption cross-section is the two-point function.
- Absorption cross-section for scalar field $P_{a b s}$ satisfies

$$
\begin{aligned}
P_{a b s}^{C F T} & \sim T_{L}^{2 h_{L}-1} T_{R}^{2 h_{R}-1} \sinh \left(\frac{\omega_{L}}{2 T_{L}}+\frac{\omega_{R}}{2 T_{R}}\right)\left|\Gamma\left(h_{L}+i \frac{\omega_{L}}{2 \pi T_{L}}\right)\right|^{2} \\
& \times\left|\Gamma\left(h_{R}+i \frac{\omega_{R}}{2 \pi T_{R}}\right)\right|^{2} .
\end{aligned}
$$

- It has been shown by Castro, Maloney, Strominger (PRD'10) that

$$
P_{a b s}^{\text {grav }} \sim P_{a b s}^{C F T},
$$

in low-frequency limit of scalar wave equation.

Background

CFT Dual on Kerr BH

Extremal Kerr

- Conformal symmetry on spacetime metric,
- Spacetime isometry $\rightarrow S L(2, R) \times U(1), S L(2, R) \rightarrow A d S_{2}$,
- $T_{R}, c_{R}=0$ while T_{L}, c_{L} are non-zero $\rightarrow \mathrm{CFT}_{1}$.

Non-extremal Kerr

- Conformal symmetry on scalar wave equation,
- Isometry of the wave equation $\rightarrow S L(2, R) \times S L(2, R) \rightarrow A d S_{3}$,
- $T_{R}, T_{L}, c_{L}, c_{R}$ are non-zero $\rightarrow \mathrm{CFT}_{2}$.

Obiectives

- Finding the hidden conformal symmetry on dyonic Kerr-Sen BH and its gauged family.
- Computation of $S_{B H}$.
- Computation of $P_{a b s}$.

Hidden Conformal Symmetry of Dyonic Kerr-Sen Black Hole

Metric

Dyonic Kerr-Sen (DKS) black hole's metric (Wu et al, PRD'21)

$$
\begin{equation*}
d s^{2}=-\frac{\Delta}{\varrho^{2}} X^{2}+\frac{\varrho^{2}}{\Delta} d r^{2}+\varrho^{2} d \theta^{2}+\frac{\sin ^{2} \theta}{\varrho^{2}} Y^{2} \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
X=d t-a \sin ^{2} \theta d \phi, & Y=a d t-\left(r^{2}-d^{2}-k^{2}+a^{2}\right) d \phi, \\
\varrho^{2}=r^{2}-d^{2}-k^{2}+a^{2} \cos ^{2} \theta, & \Delta=r^{2}-2 m r-d^{2}-k^{2}+a^{2}+p^{2}+q^{2} \tag{2}
\end{align*}
$$

m, a, q, p, d, k are mass, spin, electric, magnetic, dilaton charge, and axion charges. q, p, d, k possess the following relation

$$
\begin{equation*}
d=\frac{p^{2}-q^{2}}{2 m}, \quad k=\frac{p q}{m} . \tag{3}
\end{equation*}
$$

Lagrangian

DKS solution is the solution to Einstein-Maxwell-Dilaton-Axion (EMDA) theory,

$$
\begin{equation*}
\mathcal{L}=\sqrt{-g}\left[R-\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} e^{2 \phi}(\partial \chi)^{2}-e^{-\phi} F^{2}\right]+\frac{\chi}{2} \epsilon^{\mu \nu \rho \lambda} F_{\mu \nu} F_{\rho_{\lambda}}, \tag{4}
\end{equation*}
$$

One can write the Lagrangian (4) into the effective Lagrangian of the low energy limit of the heterotic string theory,

$$
\begin{equation*}
\mathcal{L}_{\text {eff }}=\sqrt{-g}\left(R-\frac{1}{2}(\partial \phi)^{2}-e^{-\phi} F^{2}-\frac{1}{12} e^{-2 \phi} H^{2}\right) \tag{5}
\end{equation*}
$$

where $H^{2}=H_{\mu \nu \rho} H^{\mu \nu \rho}$ is an antisymmetric tensor where it is defined by $H=d \mathcal{B}-A \wedge F / 4=-e^{2 \phi} \star d \chi$.

Fields

The electromagnetic potential, its dual, dilaton, and axion fields related to metric (1) are given by

$$
\begin{gather*}
\mathbf{A}=\frac{q\left(r+d-p^{2} / m\right)}{\varrho^{2}} X-\frac{p \cos \theta}{\varrho^{2}} Y \tag{6}\\
\mathbf{B}=\frac{p\left(r+d-p^{2} / m\right)}{\varrho^{2}} X+\frac{q \cos \theta}{\varrho^{2}} Y \tag{7}\\
e^{\phi}=\frac{(r+d)^{2}+(k+a \cos \theta)^{2}}{\varrho^{2}} \tag{8}\\
\chi=2 \frac{k r-d a \cos \theta}{(r+d)^{2}+(k+a \cos \theta)^{2}} \tag{9}
\end{gather*}
$$

The dual gauge potential can be obtained from $-d B=e^{-\phi} \star F+\chi F$.

Thermodynamic Properties

Temperature, entropy, angular velocity, electric potential, and magnetic potential are given by

$$
\begin{align*}
T_{H} & =\frac{r_{+}-m}{2 \pi\left(r_{+}^{2}-d^{2}-k^{2}+a^{2}\right)} \tag{10}\\
S_{B H} & =\pi\left(r_{+}^{2}-d^{2}-k^{2}+a^{2}\right) \tag{11}\\
\Omega & =\frac{a}{r_{+}^{2}-d^{2}-k^{2}+a^{2}} \tag{12}\\
\Phi & =\frac{q\left(r_{+}+d-p^{2} / m\right)}{r_{+}^{2}-d^{2}-k^{2}+a^{2}} \tag{13}\\
\Psi & =\frac{p\left(r_{+}+d-p^{2} / m\right)}{r_{+}^{2}-d^{2}-k^{2}+a^{2}} \tag{14}
\end{align*}
$$

The position of the inner and outer horizons are as given by

$$
\begin{equation*}
r_{ \pm}=m \pm \sqrt{m^{2}+d^{2}+k^{2}-a^{2}-p^{2}-q^{2}} . \tag{15}
\end{equation*}
$$

Scalar Wave Equation

Neutral massless scalar field equation

$$
\begin{equation*}
\nabla_{\alpha} \nabla^{\alpha} \hat{\Phi}=0 . \tag{16}
\end{equation*}
$$

We separate the coordinates in the scalar field

$$
\begin{equation*}
\hat{\Phi}(t, r, \theta, \phi)=\mathrm{e}^{-i \omega t+i n \phi} R(r) S(\theta) . \tag{17}
\end{equation*}
$$

From (17) and (16), we find

$$
\begin{array}{r}
{\left[\frac{1}{\sin \theta} \partial_{\theta}\left(\sin \theta \partial_{\theta}\right)-\frac{n^{2}}{\sin ^{2} \theta}-a^{2} \omega^{2} \sin ^{2} \theta\right] S(\theta)=-K_{h} S(\theta),} \\
{\left[\partial_{r}\left(\Delta \partial_{r}\right)+\frac{\left[\left(r^{2}-d^{2}-k^{2}+a^{2}\right) \omega-a n\right]^{2}}{\Delta}+2 a n \omega\right] R(r)=K_{h} R(r) .} \tag{19}
\end{array}
$$

where the separation constant K_{h} is the eigenvalues on a sphere.

Radial Wave Equation

To show the hidden conformal symmetry on radial part, we need to assume the low-frequency limit: $\omega M \ll 1, \omega a \ll 1, \omega q \ll 1, \omega p \ll 1$. Radial wave equation becomes

$$
\begin{equation*}
\partial_{r}\left[\left(r-r_{+}\right)\left(r-r_{-}\right) \partial_{r}\right] R(r)+\left[\frac{r_{+}-r_{-}}{r-r_{+}} A+\frac{r_{+}-r_{-}}{r-r_{-}} B+C\right] R(r)=0 . \tag{20}
\end{equation*}
$$

where

$$
\begin{align*}
& A=\frac{\left[\left(r_{+}^{2}-d^{2}-k^{2}+a^{2}\right) \omega-a n\right]^{2}}{\left(r_{+}-r_{-}\right)^{2}}, B=-\frac{\left[\left(r_{-}^{2}-d^{2}-k^{2}+a^{2}\right) \omega-a n\right]^{2}}{\left(r_{+}-r_{-}\right)^{2}}, \\
& C=-K_{h}, \quad K_{h}=h(h+1) \tag{21}
\end{align*}
$$

Does it have conformal symmetry? We will use coordinate transformations.

Conformal Coordinates

Conformal (locally) coordinate transformations

$$
\begin{align*}
& \omega^{+}=\sqrt{\frac{r-r_{+}}{r-r_{-}}} \mathrm{e}^{2 \pi T_{R} \phi+2 n_{R} t}, \omega^{-}=\sqrt{\frac{r-r_{+}}{r-r_{-}}} \mathrm{e}^{2 \pi T_{L} \phi+2 n_{L} t}, \tag{22}\\
& y=\sqrt{\frac{r_{+}-r_{-}}{r-r_{-}}} \mathrm{e}^{\pi\left(T_{L}+T_{R}\right) \phi+\left(n_{L}+n_{R}\right) t} . \tag{23}
\end{align*}
$$

We can construct operators in terms of conformal coordinates

$$
\begin{align*}
& H_{1}=i \partial_{+}, H_{-1}=i\left(\omega^{+2} \partial_{+}+\omega^{+} y \partial_{y}-y^{2} \partial_{-}\right), H_{0}=i\left(\omega^{+} \partial_{+}+\frac{1}{2} y \partial_{y}\right), \tag{24}\\
& \bar{H}_{1}=i \partial_{-}, \bar{H}_{-1}=i\left(\omega^{-2} \partial_{-}+\omega^{-} y \partial_{y}-y^{2} \partial_{+}\right), \bar{H}_{0}=i\left(\omega^{-} \partial_{-}+\frac{1}{2} y \partial_{y}\right) . \tag{25}
\end{align*}
$$

Note that $T_{L} \bar{H}_{0}+T_{R} H_{0}=\frac{i}{2 \pi} \partial_{\phi}$.

$S L(2, R) \times S L(2, R)$ Isometry

Each set of conformal operators (24) and (25) satisfies the $S L(2, R)$ algebra

$$
\begin{equation*}
\left[H_{0}, H_{ \pm 1}\right]=\mp i H_{ \pm 1}, \quad\left[H_{-1}, H_{1}\right]=-2 i H_{0} . \tag{26}
\end{equation*}
$$

We find $S L(2, R) \times S L(2, R)$ isometry group \rightarrow isometry of $A d S_{3}$ and CFT_{2}.
Each set of operators satisfies quadratic Casimir operator

$$
\begin{equation*}
\mathcal{H}^{2}=\overline{\mathcal{H}}^{2}=-H_{0}^{2}+\frac{1}{2}\left(H_{1} H_{-1}+H_{-1} H_{1}\right)=\frac{1}{4}\left(y^{2} \partial_{y}^{2}-y \partial_{y}\right)+y^{2} \partial_{+} \partial_{-} . \tag{27}
\end{equation*}
$$

So, radial equation can be written as $\mathcal{H}^{2} R(r)=C R(r)$.
Meanwhile, the angular equation possesses $S U(2) \times S U(2)$ isometry group.

Temperature Interpretation

$S L(2, R) \times S L(2, R)$ isometry generates conformal transformation on $\left(\omega^{+}, \omega^{-}\right)$. By assuming constant r connected with the (t, ϕ)-plane, we obtain

$$
\begin{equation*}
\omega^{ \pm}=e^{t^{ \pm}} \rightarrow \quad t^{+}=2 \pi T_{R} \phi+2 n_{R} t, \quad t^{-}=2 \pi T_{L} \phi+2 n_{L} t . \tag{28}
\end{equation*}
$$

This is precisely the relation between Minkowski ($\omega^{ \pm}$) and Rindler ($t^{ \pm}$) coords. In the $S L(2, R) \times S L(2, R)$ invariant Minkowski vacuum, observers at fixed position in Rindler coordinates will observe a thermal bath of Unruh radiation. By identifying the rotation on $\phi, S L(2, R) \times S L(2, R)$ breaks down to $U(1) \times U(1)$, then we find

$$
\begin{equation*}
t^{+} \sim t^{+}+4 \pi^{2} T_{R}, \quad t^{-} \sim t^{-}-4 \pi^{2} T_{L} \quad \rightarrow e^{-4 \pi^{2} i T_{R} H_{0}-4 \pi^{2} i T_{L} \bar{H}_{0}} . \tag{29}
\end{equation*}
$$

Hence, we get a thermal density matrix at those temperatures. So, this shows that the observer undergoes a thermal radiation with the temperature T_{L}, T_{R}. By comparing radial Eq. (20) and Casimir operator (27), we can identify

$$
\begin{equation*}
T_{L}=\frac{r_{+}^{2}+r_{-}^{2}+2\left(a^{2}-d^{2}-k^{2}\right)}{4 \pi a\left(r_{+}+r_{-}\right)}, \quad T_{R}=\frac{r_{+}-r_{-}}{4 \pi a} \sim T_{H} . \tag{30}
\end{equation*}
$$

Central charges

Central charges for non-extremal BHs can be assumed to connect smoothly with that of the extremal BHs (Castro, Maloney, Strominger, PRD'10),

$$
\begin{equation*}
c_{L}=c_{R} \sim c_{L}^{e x t} \tag{31}
\end{equation*}
$$

Near-horizon extremal DKS metric is given by

$$
\begin{equation*}
d s^{2}=\Gamma(\theta)\left(-\hat{r}^{2} d \hat{t}^{2}+\frac{d \hat{r}^{2}}{\hat{r}^{2}}+\alpha(\theta) d \theta^{2}\right)+\gamma(\theta)(d \hat{\phi}+e \hat{r} d \hat{t})^{2}, \tag{32}
\end{equation*}
$$

where

$$
\begin{align*}
& \Gamma(\theta)=\frac{\varrho_{+}^{2}}{v}, \quad \alpha(\theta)=\frac{v}{\Delta_{\theta}}, \quad \gamma(\theta)=\frac{r_{0}^{4} \Delta_{\theta} \sin ^{2} \theta}{\varrho_{+}^{2} \bar{\Xi}^{2}}, \\
& \varrho_{+}^{2}=r_{+}^{2}-d^{2}-k^{2}+a^{2} \cos ^{2} \theta, \quad e=\frac{2 a r_{+} \bar{\Xi}}{r_{0}^{2} v} . \tag{33}
\end{align*}
$$

Central charge of the CFT related to metric above is given by (Sakti \& Burikham, PRD'22)

$$
c_{L}^{e x t}=3 e \int_{0}^{\pi} d \theta \sqrt{\Gamma(\theta) \alpha(\theta) \gamma(\theta)}=12 a r_{+} \text {. }
$$

Cardy entropy

For generic DKS black hole metric, since $r_{+} \neq r_{-}$, we obtain

$$
\begin{equation*}
c_{L}^{e x t} \rightarrow c_{L}=c_{R}=6 a\left(r_{+}+r_{-}\right) . \tag{35}
\end{equation*}
$$

Another way to compute it is by using the covariant phase space formalism where it is required to include 'Wald-Zoupas' counterterms. (Haco, Hawking, Perry, Strominger, JHEP'18).
Using Cardy entropy formula from 2D CFT,

$$
\begin{equation*}
S_{C F T}=\frac{\pi^{2}}{3}\left(c_{L} T_{L}+c_{R} T_{R}\right) \tag{36}
\end{equation*}
$$

we find

$$
\begin{equation*}
S_{C F T}=\pi\left(r_{+}^{2}-d^{2}-k^{2}+a^{2}\right)=S_{B H} . \tag{37}
\end{equation*}
$$

"Non-extremal DKS BH is holographically dual with 2D CFT"

Hidden Conformal Symmetry of Dyonic Kerr-Sen-AdS Black Hole

Metric

Dyonic Kerr-Sen-AdS (DKSAdS) black hole's metric (Wu et al, PRD'21),

$$
\begin{equation*}
d s^{2}=-\frac{\Delta}{\varrho^{2}} X^{2}+\frac{\varrho^{2}}{\Delta} d r^{2}+\frac{\varrho^{2}}{\Delta_{\theta}} d \theta^{2}+\frac{\Delta_{\theta} \sin ^{2} \theta}{\varrho^{2}} Y^{2}, \tag{38}
\end{equation*}
$$

where

$$
\begin{aligned}
X & =d t-a \sin ^{2} \theta \frac{d \phi}{\Xi}, \quad Y=a d t-\left(r^{2}-d^{2}-k^{2}+a^{2}\right) \frac{d \phi}{\Xi} \\
\Delta & =\left(r^{2}-d^{2}-k^{2}+a^{2}\right)\left(1+\frac{r^{2}-d^{2}-k^{2}}{\rho^{2}}\right)-2 m r+p^{2}+q^{2} \\
\Delta_{\theta} & =1-\frac{a^{2}}{1^{2}} \cos ^{2} \theta, \quad \equiv=1-\frac{a^{2}}{1^{2}}, \quad \varrho^{2}=r^{2}-d^{2}-k^{2}+a^{2} \cos ^{2} \theta .
\end{aligned}
$$

DKSAdS solution is the solution to

$$
\begin{equation*}
\mathcal{L}_{\text {gauged }}=\mathcal{L}+\sqrt{-g} \frac{4+e^{-\phi}+e^{\phi}\left(1+\chi^{2}\right)}{l^{2}} \tag{39}
\end{equation*}
$$

Thermodynamic Quantities

The thermodynamic quantities of DKSAdS BH are given by

$$
\begin{gather*}
M=\frac{m}{\equiv}, \quad J=\frac{m a}{\bar{E}}, \quad Q=\frac{q}{\Xi}, \quad P=\frac{p}{\equiv}, \quad V=\frac{4}{3} r_{+} S, \quad \mathcal{P}=\frac{3}{8 \pi l^{2}}, \tag{40}\\
T_{H}=\frac{r_{+}\left(2 r_{+}^{2}-2 d^{2}-2 k^{2}+a^{2}+l^{2}\right)-m l^{2}}{2 \pi\left(r_{+}^{2}-d^{2}-k^{2}+a^{2}\right) l^{2}}, \tag{41}\\
S_{B H}=\frac{\pi}{\equiv}\left(r_{+}^{2}-d^{2}-k^{2}+a^{2}\right), \quad \Omega=\frac{a \equiv}{r_{+}^{2}-d^{2}-k^{2}+a^{2}}, \tag{42}\\
\Phi=\frac{q\left(r_{+}+d-p^{2} / m\right)}{r_{+}^{2}-d^{2}-k^{2}+a^{2}}, \quad \Psi=\frac{p\left(r_{+}+d-p^{2} / m\right)}{r_{+}^{2}-d^{2}-k^{2}+a^{2}}, \tag{43}
\end{gather*}
$$

In the rest frame, some quantities change as

$$
\begin{equation*}
M \rightarrow \frac{m}{\bar{E}^{2}}, \quad \Omega \rightarrow \Omega+\frac{a}{p^{2}}, \quad V \rightarrow V+\frac{4 \pi}{3} a J, \tag{44}
\end{equation*}
$$

which satisfy

$$
\begin{equation*}
d M=T_{H} d S_{B H}+\Omega d J+\Phi d Q+\Psi d P+V d \mathcal{P} . \tag{45}
\end{equation*}
$$

Scalar Wave Equation

By using neutral massless scalar field equation $\nabla_{\alpha} \nabla^{\alpha} \hat{\Phi}=0$ and ansatz $\hat{\Phi}(t, r, \theta, \phi)=\mathrm{e}^{-i \omega t+i n \phi} R(r) S(\theta)$, we find

$$
\begin{gather*}
{\left[\frac{1}{\sin \theta} \partial_{\theta}\left(\sin \theta \partial_{\theta}\right)-\frac{n^{2} \bar{\Xi}^{2}}{\sin ^{2} \theta}+\frac{2 a n \omega \equiv-a^{2} \omega^{2} \sin ^{2} \theta}{\Delta_{\theta}}\right] S(\theta)=-K_{h} S(\theta),} \tag{46}\\
{\left[\partial_{r}\left(\Delta \partial_{r}\right)+\frac{\left[\left(r^{2}-d^{2}-k^{2}+a^{2}\right) \omega-a n \equiv\right]^{2}}{\Delta}-K_{h}\right] R(r)=0,} \tag{47}
\end{gather*}
$$

where the separation constant K_{h} is different with that in ungauged case.
To show the conformal symmetry, it is compulsory to approximate $\Delta \simeq v\left(r-r_{+}\right)\left(r-r_{*}\right)$ in the near-horizon region in addition to low-frequency assumption where

$$
\begin{aligned}
r_{*} & =r_{+}-\frac{1}{v r_{+}}\left[\frac{2 r_{+}^{2}\left(2 r_{+}^{2}-2 d^{2}-2 k^{2}+a^{2}+l^{2}\right)}{l^{2}}-\frac{\left(r_{+}^{2}-d^{2}-k^{2}+a^{2}\right)}{l^{2}}\right. \\
& \left.\times \quad\left(r_{+}^{2}-d^{2}-k^{2}+l^{2}\right)+q^{2}+p^{2}\right], \quad v=1+\frac{6 r_{+}^{2}-2 d^{2}-2 k^{2}+a^{2}}{l^{2}}
\end{aligned}
$$

Radial Wave Equation

Radial wave equation

$$
\begin{equation*}
\partial_{r}\left[\left(r-r_{+}\right)\left(r-r_{*}\right) \partial_{r}\right] R(r)+\left[\frac{r_{+}-r_{*}}{r-r_{+}} A+\frac{r_{+}-r_{*}}{r-r_{*}} B+C\right] R(r)=0 . \tag{48}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{s}=\frac{\left[\left(r_{+}^{2}-d^{2}-k^{2}+a^{2}\right) \omega-a m \equiv\right]^{2}}{v^{2}\left(r_{+}-r_{*}\right)^{2}}, \\
& B_{s}=-\frac{\left[\left(r_{*}^{2}-d^{2}-k^{2}+a^{2}\right) \omega-a m \equiv\right]^{2}}{v^{2}\left(r_{+}-r_{*}\right)^{2}}, \quad C_{s}=-\frac{K_{h}}{v} \tag{4}
\end{align*}
$$

The conformal symmetry can be shown using similar coordinate transformation as ungauged case, yet by changing $r_{-} \rightarrow r_{*}$. In this case, the radial equation can be shown to have an $S L(2, R) \times S L(2, R)$ isometry group.

CFT Temperatures, Central charges, Entropy

From the conformal coordinate transformation, we can identify the CFT temperatures which are given by

$$
\begin{equation*}
T_{L}=\frac{v\left[r_{+}^{2}+r_{*}^{2}+2\left(a^{2}-d^{2}-k^{2}\right)\right]}{4 \pi a\left(r_{+}+r_{*}\right) \equiv}, \quad T_{R}=\frac{v\left(r_{+}-r_{*}\right)}{4 \pi a \Xi} . \tag{50}
\end{equation*}
$$

The central charges can be computed in the similar way, that results in

$$
\begin{equation*}
c_{L}^{e x t} \rightarrow c_{L}=c_{R}=\frac{6 a\left(r_{+}+r_{*}\right)}{v} \tag{51}
\end{equation*}
$$

Then by using Cardy entropy formula from 2D CFT, we find

$$
S_{C F T}=\frac{\pi}{\equiv}\left(r_{+}^{2}-d^{2}-k^{2}+a^{2}\right)=S_{B H} .
$$

"Non-extremal DKSAdS BH is holographically dual with 2D CFT"

Absorption Cross-section Dyonic Kerr-Sen Black Hole

Radial Wave Solution

To further support the dual CFT, we study scattering of non-extremal DKS BH. Firstly, we need to solve radial Eq. (20). We introduce coord. transformation $z=\frac{r-r_{+}}{r-r_{-}}$which implies that when $r_{+} \leq r \leq \infty$, we have $0 \leq z \leq 1$.

$$
\begin{equation*}
\left[z(1-z) \partial_{z}^{2}+(1-z) \partial_{z}+\frac{A}{z}+B+\frac{C}{1-z}\right] R(z)=0, \tag{52}
\end{equation*}
$$

where the ingoing solution to that in the near-region $(r \ll 1 / \omega)$ is

$$
\begin{equation*}
R^{i n}(z)=z^{-i \sqrt{A}}(1-z)^{(1+l)}{ }_{2} F_{1}\left(a_{s}, b_{s} ; c_{s} ; z\right), \tag{53}
\end{equation*}
$$

where $a_{s}=1+h-i(\sqrt{A}+\sqrt{-B}), b_{s}=1+h-i(\sqrt{A}-\sqrt{-B}), c_{s}=1-2 i \sqrt{A}$. In the asymptotic region ($r \gg M$ or $z \rightarrow 1$), above solution will become

$$
\begin{equation*}
R^{i n}(r \gg M) \sim D_{0} r^{h}+D_{1} r^{-1-h}, \tag{54}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{0}=\frac{\Gamma\left(c_{s}\right) \Gamma(1+2 h)}{\Gamma\left(a_{s}\right) \Gamma\left(b_{s}\right)}, \quad D_{1}=\frac{\Gamma\left(c_{s}\right) \Gamma(-1-2 h)}{\Gamma\left(c_{s}-a_{s}\right) \Gamma\left(c_{s}-b_{s}\right)} . \tag{55}
\end{equation*}
$$

Absorption Cross-section

The essential part of the absorption cross-section can be read out directly from the coefficient D_{0}, namely

$$
\begin{equation*}
P_{a b s} \sim\left|D_{0}\right|^{-2} \sim \sinh \left(2 \pi A^{1 / 2}\right)\left|\Gamma\left(a_{s}\right) \Gamma\left(b_{s}\right)\right|^{2} . \tag{56}
\end{equation*}
$$

Note that the constant D_{1} is suppressed by the constant D_{0}, so we can ignore D_{1}. Note that this will agree, up to the undetermined normalization factors, with the CFT result,

$$
\begin{equation*}
P_{a b s} \sim \sinh \left(\frac{\omega_{L}}{2 T_{L}}+\frac{\omega_{R}}{2 T_{R}}\right)\left|\Gamma\left(h_{L}+i \frac{\omega_{L}}{2 \pi T_{L}}\right)\right|^{2}\left|\Gamma\left(h_{R}+i \frac{\omega_{R}}{2 \pi T_{R}}\right)\right|^{2} . \tag{57}
\end{equation*}
$$

In order to match with gravity, we need $\omega_{L, R}, h_{L, R}$. We already have that $h_{L, R}=h+1$. Then $\omega_{L, R}$ can be computed from equating

$$
\begin{equation*}
\delta S_{B H}=\frac{\delta M}{T_{H}}-\frac{\Omega \delta J}{T_{H}}, \quad \delta S_{C F T}=\frac{\delta E_{L}}{T_{L}}+\frac{\delta E_{R}}{T_{R}} . \tag{58}
\end{equation*}
$$

CFT Frequencies

From equating the entropies and identifying δM as ω and δJ as n, this yields to identification of $\delta E_{R, L}$ as $\omega_{R, L}$ where

$$
\begin{align*}
& \omega_{L}=\frac{r_{+}^{2}+r_{-}^{2}+2\left(a^{2}-d^{2}-k^{2}\right)}{2 a} \omega \\
& \omega_{R}=\omega_{L}-n . \tag{59}
\end{align*}
$$

Absorption Cross-section Dyonic Kerr-Sen-AdS Black Hole

Radial Wave Equation

To consider the scattering issue of DKSAdS BH, we need to consider near-extremal condition of the radial wave equation because the near-horizon approximation will break down in asymptotic region. In addition, we also consider the scalar field frequency in the near-superradiant bound $\omega=\omega_{s}+\hat{\omega} \frac{\lambda}{r_{0}}$ where $\omega_{s}=n \Omega$. By using near-extremal coord. transformations,

$$
\begin{equation*}
r=\frac{r_{+}+r_{*}}{2}+\lambda r_{0} y, \quad r_{+}-r_{*}=\mu \lambda r_{0}, \quad t=\frac{r_{0} \bar{\Xi}}{\lambda} \tau, \quad \phi=\varphi+\frac{\Omega_{H} r_{0} \bar{\Xi}}{\lambda} \tau, \tag{60}
\end{equation*}
$$

and then followed by $z=\frac{y-\mu / 2}{y+\mu / 2}$, we can find the follwoing radial wave equation

$$
\begin{equation*}
\left[z(1-z) \partial_{z}^{2}+(1-z) \partial_{z}+\frac{\hat{A}_{t}}{z}+\hat{B}_{t}+\frac{C_{t}}{1-z}\right] R(z)=0 \tag{61}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{A}_{t}=\frac{\hat{\omega}^{2}}{v^{2} \mu^{2}}, \quad \hat{B}_{t}=-\frac{1}{v^{2}}\left(\frac{\hat{\omega}}{\mu}-2 n \Omega_{H} r_{+}\right)^{2}, \quad C_{t}=C_{t}(\hat{\omega}) . \tag{62}
\end{equation*}
$$

Radial Wave Solution

The ingoing solution to wave equation (61) is

$$
\begin{equation*}
R(z)=z^{-i \sqrt{\widehat{A_{t}}}}(1-z)^{1+h}{ }_{2} F_{1}\left(a_{s}, b_{s} ; c_{s} ; z\right), \tag{63}
\end{equation*}
$$

with the parameters
$a_{s}=1+h-i\left(\sqrt{\hat{A}_{t}}+\sqrt{-\hat{B}_{t}}\right), \quad b_{s}=1+h-i\left(\sqrt{\hat{A}_{t}}-\sqrt{-\hat{B}_{t}}\right)$,
$c_{s}=1-2 i \sqrt{\hat{A}_{t}}, h=\frac{1}{2}\left(-1+\sqrt{1-4 C_{t}}\right)$.
In the asymptotic region $(y \gg \mu / 2$ or $z \rightarrow 1)$, above solution is

$$
\begin{equation*}
R(y) \sim D_{0} y^{h}+D_{1} y^{-1-h} \tag{64}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{0}=\frac{\Gamma\left(c_{s}\right) \Gamma(1+2 h)}{\Gamma\left(a_{s}\right) \Gamma\left(b_{s}\right)}, \quad D_{1}=\frac{\Gamma\left(c_{s}\right) \Gamma(-1-2 h)}{\Gamma\left(c_{s}-a_{s}\right) \Gamma\left(c_{s}-b_{s}\right)} . \tag{65}
\end{equation*}
$$

Absorption Cross-section

Similarly with ungaged case, we can find the absorption cross-section as

$$
\begin{equation*}
P_{a b s} \sim\left|D_{0}\right|^{-2} \sim \sinh \left(2 \pi \hat{A}_{t}^{1 / 2}\right)\left|\Gamma\left(a_{s}\right) \Gamma\left(b_{s}\right)\right|^{2} . \tag{66}
\end{equation*}
$$

Above $P_{\text {abs }}$ will agree with the CFT result (57) with the following quantities

$$
\begin{equation*}
\omega_{L}=n, \quad \omega_{R}=\frac{r_{0}}{a \equiv}\left(\hat{\omega}-\mu n \Omega_{H} r_{+}\right), \tag{67}
\end{equation*}
$$

while the temperatures and conformal weights are now given by

$$
\begin{equation*}
T_{L}=\frac{v}{4 \pi \Omega_{H} r_{+}}, \quad T_{R}=\frac{v r_{0}}{4 \pi a \Xi} \lambda \mu, \quad h_{L}=h_{R}=1+h . \tag{68}
\end{equation*}
$$

Note that for the extremal case, T_{R} will vanish.

Conclusions

- Neutral scalar wave equation in the low-frequency limit in DKS and DKSAdS BHs's background possesses $S L(2, R) \times S L(2, R)$ isometry \rightarrow isometry of $A d S_{3}$ and CFT_{2}.
- CFT in DKS black hole is represented by

$$
T_{L}=\frac{r_{+}^{2}+r_{-}^{2}+2\left(a^{2}-d^{2}-k^{2}\right)}{4 \pi a\left(r_{+}+r_{-}\right)}, \quad T_{R}=\frac{r_{+}-r_{-}}{4 \pi a}, \quad c_{L}=c_{R}=6 a\left(r_{+}+r_{-}\right) .
$$

that will reproduce Bekenstein-Hawking entropy from Cardy formula. While for DKSAdS BH, CFT is represented by

$$
\begin{gathered}
T_{L}=\frac{v\left[r_{+}^{2}+r_{*}^{2}+2\left(a^{2}-d^{2}-k^{2}\right)\right]}{4 \pi a\left(r_{+}+r_{*}\right) \equiv}, \quad T_{R}=\frac{v\left(r_{+}-r_{*}\right)}{4 \pi a \Xi}, \\
c_{L}=c_{R}=\frac{6 a\left(r_{+}+r_{*}\right)}{v}
\end{gathered}
$$

These reduce to those of DKS BH when $1 / R^{2}=0$.

- $P_{\text {abs }}$ agrees, up to the undetermined normalization factors, with the CFT result by determining the CFT frequencies.

THE END
 Thank you for your attention!

