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Conceptional Problem

EFE introduce an astonishingly-correct 
approximation at large scales!

Einstein Field Equations (EFE) combine 
classical geometry 

Leiden, Netherlands

with quantizable energy-momentum tensor!

Gravity (similar to EM for instance) is represented as a form 
of geometry or covariant derivative. While in Gravity, 
gravitational/inertial mass ratio is unity, i.e., universal 
geometry but no neutrally gravitational mass, in EM 
charge/mass ratio differs with  the particles, i.e., different 
geometries



General Relativity (Smoothed)
• Large scale and gravity force (?)
• Objects are point particles
• Events happen continuously with 

deterministic outcomes
• No instant connections between 

apart events
• Noncoherent and certain 

measurement; commutation
• Nonsensical predictions at low scale 
•  

Quantum Mechanics (roughed)
• Low scale and three forces of nature
• Objects are wave functions
• Events happen in jumps with 

probabilistic outcomes
• Instant entanglement between apart 

events
• Coherent and uncertain measurement; 

noncommutation
• Nonsensical predictions at large scale 

GR and QM are fundamentally distinct theories explaining how nature 
works but with genuinely incompatible perception of reality.

Motivations



Main Problem and Questions
Unification principles of GR and QM requires

Quantization of GR and simultaneously Gravitization of QM  
General Relativity 
(roughed at some scale)
• Spacetime discretization,
• Measurement uncertainty,
• Noncommutative relations,
• Generalized Riemannian manifold

Quantum Mechanics 
(smoothed at some scale)
• Gravitational field impacts,
• Generalized noncommutation relation, 
• Relativity principle,
• Isotropy and Lorentz covariance

Quantizing GR allows for 
corrections to GR at low scale

Gravitating QM allows for 
corrections to QM at large scale

Motivations

We suggest to start from scratch, quantizing metric tensor in a quantum-geometrical approach 



Quantizing Rank-2 Tensor Field
1) Loop quantum gravity, string theory and QFT suggest quantization 

of the gravitational field, including that of the metric tensor. QFT treats 
metric tensor as a quantum field, with the associated creation and 
annihilation operators, and applies principles of QM to its behavior. 

2) Quantum geometry combines a set of mathematical concepts 
generalizing the geometric properties of spacetime at the quantum 
scale, where QM effects become significant.

3) Because of its geometric nature, Quantum geometry likely succeeds 
in reconciling principles of GR and QM!



Einstein Field Equations in GR

Nothing would 
quantize EFE

more profounder than 
the fundamental metric



Our Approch to gravitize QM



Δx and Δp are not correlated
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RELATIVISTIC GENERALIZED 

UNCERTAINTY PRINCIPLE

ΔxΔp≧ħ[1+β(Δp)2+β<p>2]/2

Qravitizing QM:
Relativistic Generalized Uncertainty Principle
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For a test particle in curved spacetime, the physical position and momentum 
coordinates are given in terms of their auxiliary 4-vectors

With Snyder algebra,

Then,  

= ϕ

Qravitizing QM:
Relativistic Generalized Uncertainty Principle



“Gravitizing the quantum”, 2202.06890 [hep-th], IJMPD31(2022)2242024
suggests

● Extending the dynamical aspects of general covariance (dynamical 
physical quantities) to QM structures

● Dynamizing the quantum geometry so that the quantum gravity 
● becomes consistent with the principles of unitarity and 
● gains fundamental aspects of gravity, such as topology change.

Turning the Hilbert-space scalar product into dynamical similar to the GR’s 
dynamical metric

Alternative Approaches to “Qravitizing the Quantum”



Collapse model modifies the standard QM by a physical mechanism  
responsible for the collapse of the wavefunction "measurement problem".

● Examples: Spontaneous/Continuous Spontaneous Localisation model.

● Also, a non-relativistic spontaneous collapse model based on the idea of 
collapse points situated at fixed spacetime coordinates was proposed. 

● Penrose suggests gravity as the physical process modifying QM, 
GERG8(1996)581, FoundPhys44(2014)557

● In summary, by including nonlinear and stochastic terms for the collapse 
of the wavefunction, the Schrodinger equation is modified.

Alternative Approaches to “Qravitizing the Quantum”



● With the integration of quantum gravitational degrees of freedom an 
effective description of quantum particle’s kinematics becomes feasible. 
 

● A modification in relativistic kinematics could be geometrically described in 
Finsler and Hamilton geometry, in which the vacuum states of quantum 
gravity could be characterized, at low energies. 

● Also, the Finslerian length element must contribute to the quantization of 
spacetime. 

● The proposed quantization of the fundamental tensor predicts a maximal 
proper force as a new physical constant, which gravitationally drives the 
quantum particle’s motion and causes its maximal proper acceleration 
along the additional curvatures. 

Extending our Approach of “Qravitizing the Quantum”



Attempts to generalize/quantize GR



• We start with Weyl’s attempt to unifying Gravitation and 
Electromagnetism, H. Weyl, Sitzungsberichte der Preussinske 
Akademie der Wissenschaften, 465, (1918)

Attempts to generalize GR

• Using Finsler spaces, complex manifolds, scalar-tensor 
coupling, extended particles in form of strings or bubbles, 
etc. Paul Finsler, Über Kurven und Flächen in allgemeinen Räumen, 
Dissertation, Göttingen (1918)

• Increasing the number of dimensions as in Kaluza-Klein 
approach T. Kaluza, Zum Unitötsproblem der Physik, Sitz. Preuss. Akad. 
Wiss. Phys. Math. K1 (1921) 966.  O. Klein, Quantentheorie und 
fünfdimensionale Relativitaetstheorie, Zeits. Phys. 37 (1926) 895. 



• Amelino-Camelia proposed a model based on the existence of a Length 
scale G. Amelino-Camelia, Int. J. Mod. Phys. D 11, 35 (2002); Phys. Lett. B 
510, 255 (2001) 

• Magueijo and Smolin preferred to use an Energy scale J.Magueijo and 
L.Smolin, Phys. Rev. Lett. 88, 190403 (2002)

• This leads to a resulting maximal momentum found in many theories 
S.G. Low, J. Math. Phys., 38, 2197 (1997)

• Ahluwalia and Kirchbach argued that gravitational and quantum realms 
require two invariant scales => gravitationally modified de Broglie 
wavelength D.V.Ahluwalia, Phys. Lett, A 275, 31 (2000)

Attempts to generalize GR



• Ketsaris starts from a 7d-manifold and obtained a Maximal Acceleration 
and Maximal Angular Velocity A. A. Ketsaris, Accelerated motion and 
special relativity transformations

• Quantum Special Relativity (QSR), Poincaré covariant formulation of QM, 
which is applicable to massive particles propagating at velocities up to c, 
Martin, B.R.; Shaw, G.. Particle Physics, (2008)

• Amelino-Camelia suggests Quantum General Relativity (QGR) which 
requires an appropriate extension of the k-Minkowski spacetime to some 
sort of k-phase space intended as space xi, t, pi, E rather than just xi, pi 
Giovanni Amelino-Camelia, AIP Conf.Proc. 589, 137-150 (2001)

Attempts to generalize GR



• The ”Quantum Geometry” proposed in E.R.Caianiello, Nuovo Cimento, 
59B, 350 (1980); E.R.Caianiello, G.Marmo, G.Scarpetta, Nuovo Cimento, 86A, 337 (1985) 
predicts a maximal acceleration E.R.Caianiello, Lett. Nuovo Cimento, 32, 65 
(1981)

• With an upper limit on acceleration Scarpetta suggested 
deformation of QSR G.Scarpetta, Lett. Nuovo Cimento, 41, 51 (1984)

• QGR was proposed by Brandt and Schuller  H.E. Brandt, Found. Phys. 
Lett., 2, 39, (1989), F.P. Schuller, Annals Phys., 299, 174, (2002)

• Due to Maximal Acceleration, quantum corrections to the 
classical spacetime could be analyzed E.R. Caianiello, A.Feoli, M.Gasperini 
and G.Scarpetta, International Journal of Theoretical Physics, 29, 131 (1990) 

Attempts to generalize GR



• Caianiello’s idea is that the simplest theoretical 
framework, the one including the maximal proper 
acceleration, must fulfill physical invariance.

• Generic line element defined in an eight-
dimensional phase-space.

Attempts to generalize GR



• Quantization as geometry in phase space or the quantum 
corrections to the spacetime metric from the geometric phase 
space quantization.

• Additional dimensions or additional curvatures, i.e., geometry, 
mimic the possible quantization of the fundamental tensor. 

• In spacetime the quantization are interpreted as curvature emerged 
by the relativistic eight-dimensional spacetime tangent bundle

• The geometric theory for spacetime (quantum geometry) 
predicts that the world lines are associated with physical 
particles having an upper bound for the proper (physical) 
acceleration.

• Caianiello derived the maximal proper acceleration from the 
principles of quantum mechanics and relativity

Attempts to generalize GR



• Brandt proposed QGR

Attempts to generalize GR



Born suggested duality-symmetry configuration of distance and momentum 
of a free particle

where distance and momentum are four-vectors

Based on the assumption of invariant wave functions, the canonical 
functions 

Born Reciprocity Principle

● And components of the angular momentum,        
are also invariant under the proposed transformation.

● All these conclusions are assume to be equally valid 
in classical and quantum mechanics. 

Attempts to generalize GR



Born also suggested another invariant transformation combining 
both distance the momentum operators, quantum metric operator 

Coupling GR metric structure with spacetime coordinates 
combining or exchanging distance xΔ µ, and momentum 
uncertainties pΔ 𝜈 draw the conclusion that BRP introduces 
dynamics to GR and reveals its phase-space structure

Validity of QM implies fundamental symmetry between space and 
momentum: BRP tells that classical & quantum laws of Nature are symmetric.

Therefore, following noncommutative relations were suggested

Attempts to generalize GR



Our Attempt to generalize/quantize GR



Quantum Geometry:
 Finsler/Hamilton Geometry



Finsler-Hamilton Manifolds



Finsler-Hamilton Manifolds



• Finsler manifold: tangent bundle (TM,𝜋,M), M is nd C∞-manifold. 
• Hamilton manifold: cotangent bundle T M∗  of finite-dimensional 

manifold M equipped with a regular Hamiltonian. Hamilton manifold: 
cotangent bundle (T*M, 𝜋*, M). 

• Dualization between Finsler and Hamilton geometries, i.e., a nonlinear 
connection (TM, 𝜋, M) → (T*M, 𝜋*, M), because the geometric structure 
of T*M, TT*M is different from TM, TTM,

• Hamilton H(x,p) can only be obtained from Finsler F(x,v) by Legendre 
transformation.

• F(x,v)  → F(x,p) is obtained solely from homogeneity of Finslerian F. 

Finsler-Hamilton Manifolds



Klein metric is among  
simplest Finsler metric

With the Hessian and anisotropic transformation of the components of the 
corresponding Finsler metric tensor 

Finsler-Hamilton Manifolds



By equating the line element in Finsler space with the one in Riemann space, 
the generalized fundamental tensor in Riemann space becomes

Quantized Fundamental Tensor



The symmetric metric dab should NOT be vanishing as ɸ is positive finite

Quantized Fundamental Tensor



Quantized Fundamental Tensor



Quantized Metric Tensor 
on Riemann Manifold

Classical Metric Tensor on 
Riemann Manifold

Klein  Metric

RGUP Approach

Phase-Space Finsler Geometry

Quantized Fundamental Tensor



Quantum Operators

Quantum Constants

Quantized Fundamental Tensor



0-homogeneous Phi plays multiple roles. The phase-
space metric and whose relation to Finsler structure

By multiplying both sides with F and expressing ϕF as F̄

By assuming that β̄ = βF3

The first term F could be related 
to the Riemann metric

The second term must be one-
form on manifold M at point p

ϕ is capable of retaining the special curvature properties of the Randers metric.
geometrical “unification” of the gravitation and electromagnetism interactions
Phys. Rev. 59 (1941) 195-199

Roles of            



 Symmetric and Constant (Linear) Connection wrt g

Linear metric space
Smoothly varying positive definite quadratic form

Non-linear metric space
Quadratic restriction on F2=gμν(x)dxμdxν 
→ arc length, curvature & Euler-Lagrange  
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Without F2=gμν(x)dxμdxν

quadratic restriction 

Dynamics of a quantum particle 
=> F(x, dx) => F(x, v)

Homogeneous Finsler Structure: 
F(x, mv) => F(x, p)

Legendre transform F(x, v) => 
H(x, p), Hamilton Structure Descritized Finsler Structure     

gμν=eμ
 · eν

 g̃μν = C(x) gμν 𝝘α
μν = 𝝘α

νμ
          ∇α gμν = ∇β gμν = 0

Similar to Weyl metric, gμν is 
approximately conformally transformed

F(x, ϕp) = ϕ[gABCD(x) dpAdpBdpCdpD]1/4

F(x, ϕp) = ϕ[gAB(x) dpAdpB]1/2,
quadratic curves → 

quartic curves → 

α, β, μ, ν = 0,1,…,3
A,B,C,D = 0,1,2…,7



Quantum Theory (QT)

(Relativistic) generalized HUP

No Fields including Gravitation

Generalized Quantum Theory

Heisenberg Uncertainty Principle (HUP)

(Relativistic) Gravitational Fields
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General Relativity (GR)
Riemann Geometry (4 dimensions)
Manifold M and metric tensor g ν𝜇

Finslerian Extension of GR
Finsler Geometry (Phase Space)
Finsler Structure F(x,v) and gab(x)
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F(x,v) →
F(x,p) →
F(x,ϕp)

Klein Metric → 
gab(x)→g̃ ν𝜇 Principles of GR 

and QT are 
unified, at least 

partiallydsFinsler=dsRiemann

g̃ ν 𝜇 = C(x) g ν𝜇

Principles of both theories 
are fundamentally different



Constructing GR: Metric Tensor 



Constructing GR: Metric Tensor 



• a geometric object connecting nearby tangent (curved) 
spaces, i.e., permitting differentiability of the tangent 
vector fields or assuring them restrict dependence on 
manifold in a fixed vector space,

• a function assigning to each tangent vector and each 
vector field a covariant derivative or a new tangent 
vector.

In differential geometry, the generic form of affine connection reads

Levi–Civita connection Covariant derivative of 
metric

TorsionChristoffel 
symbol

Constructing GR: Affine Connection 



GR assumes torsion-free and metric compatibility. 
The latter implies linear independence of partial derivative tangent vectors and a 
flat space that can be found locally in a suitable frame (like Mikowski space),

Levi–Civita connection Covariant derivative of 
metric

TorsionChristoffel 
symbol

Constructing GR: Affine Connection 



Constructing GR: Affine Connection 



The proper time can be expressed as

The Euler-Lagrange equations can be derived by the variational methods

Constructing GR: Geodesic Congruence 



Then, the generalized geodesic equations read

Constructing GR: Geodesic Congruence 



● The difference between the geodesic equations for g  and the ones for 𝛼𝛽
̃g  is not negligible.𝛼𝛽

● The impact of such additional contributions to the emerged geometric 
structures and curvatures extends the GR’s applicability to cover both low 
and large scales.

Constructing GR: Geodesic Equations 



Additional ConnectionsAdditional Curvatures

Insights on Quantum GravityQuantum Gravity

NEWLAND

Additional Structures

GR’s Sensical Predictions



Einstein-Gilbert Straus Metric

● When combining FLRW and Schwarzschild metrics so that the 
Schwarzschild metric becomes embedded in an expanding Universe, one 
refers to the Swiss–cheese model of the Universe which was suggested by 
Einstein and Straus in the 1940s.  Rev. Mod. Phys., 17(1945)120–124 

● The Swiss-cheese model was an early attempt to approach the Universe 
as lumps of cosmic substance which is inhomogeneously interspersed with 
holes or voids.

● This was correctly formulated by Gilbert Monthly Notices of the Royal 
Astronomical Society, 116(1956)678–683



● The EGS metric rads

● Imposing M (r, t) requires incorporating an overall expansion, for instance, 
finite cosmological constant Λ

● For the sake of simplicity, let us assume that the so-called Einstein–Straus 
vacuole forms exact spheres

Einstein-Gilbert Straus Metric



● The arbitrary function f(t) expresses the evolution of the cosmic substance 
with the cosmic time t. To scale r with t, let us suggest that

Einstein-Gilbert Straus Metric



Riamann Curvature Tensor

Connections & 
QM imprints

Conventional Riemann Curvature Tensor

Metrics, Geometric Structures & QM imprints



Ricci curvature tensor can be deduced by contraction of Riemann curvature 
tensor or derivations of the affine connections

Connections & 
QM imprints

Conventional Ricci Curvature Tensor

Metrics, Geometric Structures & QM imprints

Ricci Curvature Tensor







● The classical Ricci curvatures are positive and long-lived.

● Decreasing t the positivity of Rβν increases.

● There is almost no impact of varying r on Rβν. 

● The results of R̃βν are negative but short-lived. 

Athough the absence of topological consequences, there are no 
topological obstructions for the negativity of the Ricci curvatures

Additional Curvature/Gravitation





● One would rightfully argue that the emerged curvatures might be 
artifacts in some coordinate systems. 

● An assessment would be feasible by the basic polynomial curvature 
invariants in GR, namely, the Ricci and Kretschmann invariant 
scalars.

Additional Curvature/Gravitation





● The proposed quantization seems to unveil quantum-conditioned 
curvatures whose intrinsicality, essentiality, and reality are assessed by 
finite Ricci and Kreschmann invariant scalars. 

● The additional sources of gravity 
● i) arise in the relativistic quantum regime, 
● ii) are overcast at nonrelativistic classical regime, and 
● iii) are apparently overlooked in Einstein’s GR. 

● We conclude that the proposed quantum geometrical approach would 
be rather supposed to represent an appropriate mathematical 
framework for the emergence of quantum gravity.

Conclusions



Thank You!
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