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Conceptional Problem

Cinatein Tield Equations (EFE) combine
classical geometry
with quantizable enerqy-momentum tenaor!

EFE introduce an astonishingly-correct
approximation at large scales!

Gravity (similar to EM for instance) is represented as a form
of geometry or covariant derivative. While in Gravity, :
gravitational/inertial mass ratio is unity, i.e., universal |

geometry but no neutrally gravitational mass, in EM
charge/mass ratio differs with the particles, i.e., different
geometries —

Leiden, Netherlands




Motivations

GR and QM are fundamentally distinct theories explaining how nature
works but with genuinely incompatible perception of reality.

e
General Relativity Quantum Mechanics
Large scale and gravity force (?) Low scale and three forces of nature
Objects are point particles Objects are wave functions
Events happen continuously with Events happen in jumps with
deterministic outcomes probabilistic outcomes
No instant connections between Instant entanglement between apart
apart events events
Noncoherent and certain Coherent and uncertain measurement;
measurement; commutation noncommutation

Nonsensical predictions at low scale Nonsensical predictions at large scale



Motivations

Unification principles of GR and QM requires
Quantization of GR and simultaneously Gravitization of QM

General Relativity Quantum Mechanics
(roughed at some scale) (smoothed at some scale)
Spacetime discretization, Gravitational field impacts,
Measurement uncertainty, Generalized noncommutation relation,
Noncommutative relations, Relativity principle,
Generalized Riemannian manifold Isotropy and Lorentz covariance
Quantizing GR allows for Gravitating QM allows for
corrections to GR at low scale corrections to QM at large scale

We suggest to start from scratch, quantizing metric tensor in a quantum-geometrical approach



Quantizing Rank-2 Tensor Field

1) Loop quantum gravity, string theory and QFT suggest quantization
of the gravitational field, including that of the metric tensor. QFT treats
metric tensor as a quantum field, with the associated creation and
annihilation operators, and applies principles of QM to its behavior.

2) Quantum geometry combines a set of mathematical concepts
generalizing the geometric properties of spacetime at the quantum
scale, where QM effects become significant.

3) Because of its geometric nature, Quantum geometry likely succeeds
In reconciling principles of GR and QM!



Einstein Field Equations in GR
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Our Approch to gravitize QM



Position Uncertainty, Ax

Qravitizing QM:

Relativistic Generalized Uncertainty Principle

Without Gravitational Fields

With Gravitational Fields

With Relativistic Gravitational Fields
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Qravitizing QM:

Relativistic Generalized Uncertainty Principle

For a test particle in curved spacetime, the physical position and momentum
coordinates are given in terms of their auxiliary 4-vectors
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Alternative Approaches to “Qravitizing the Quantum”

“Gravitizing the quantum”, 2202.06890 [hep-th], IIMPD31(2022)2242024
suggests

* Extending the dynamical aspects of general covariance (dynamical
physical quantities) to QM structures

* Dynamizing the quantum geometry so that the quantum gravity
* becomes consistent with the principles of unitarity and
* gains fundamental aspects of gravity, such as topology change.

Turning the Hilbert-space scalar product into dynamical similar to the GR’s
dynamical metric



Alternative Approaches to “Qravitizing the Quantum”

Collapse model modifies the standard QM by a physical mechanism
responsible for the collapse of the wavefunction "measurement problem".

* Examples: Spontaneous/Continuous Spontaneous Localisation model.

* Also, a non-relativistic spontaneous collapse model based on the idea of
collapse points situated at fixed spacetime coordinates was proposed.

* Penrose suggests gravity as the physical process modifying QM,
GERGS8(1996)581, FoundPhys44(2014)557

* In summary, by including nonlinear and stochastic terms for the collapse
of the wavefunction, the Schrodinger equation is modified.



Extending our Approach of “Qravitizing the Quantum”

* With the integration of quantum gravitational degrees of freedom an
effective description of quantum particle’s kinematics becomes feasible.

* A modification in relativistic kinematics could be geometrically described in
Finsler and Hamilton geometry, in which the vacuum states of quantum
gravity could be characterized, at low energies.

* Also, the Finslerian length element must contribute to the guantization of
spacetime.

* The proposed quantization of the fundamental tensor predicts a maximal
proper force as a new physical constant, which gravitationally drives the
guantum particle’s motion and causes its maximal proper acceleration
along the additional curvatures.



Attempts to generalize/quantize GR



*  We start with Weyl’s attempt to unifying Gravitation and

Electromagnetism, H. Weyl, Sitzungsberichte der Preussinske
Akademie der Wissenschaften, 465, (1918)

* Increasing the number of dimensions as in Kaluza-Klein

approach T. Kaluza, Zum Unitotsproblem der Physik, Sitz. Preuss. Akad.

Wiss. Phys. Math. K1 (1921) 966. O. Klein, Quantentheorie und L'\
finfdimensionale Relativitaetstheorie, Zeits. Phys. 37 (1926) 895. i‘

* Using Finsler spaces, complex manifolds, scalar-tensor —
coupling, extended particles in form of strings or bubbles,

etc. Paul Finsler, Uber Kurven und Flachen in allgemeinen Réumen,w
Dissertation, Gottingen (1918)




Amelino-Camelia proposed a model based on the existence of a Length

scale G. Amelino-Camelia, Int. J. Mod. Phys. D 11, 35 (2002); Phys. Lett. B
510, 255 (2001)

Magueijo and Smolin preferred to use an Energy scale J.Magueijo and
L.Smolin, Phys. Rev. Lett. 88, 190403 (2002)

This leads to a resulting maximal momentum found in many theories

S.G. Low, J. Math. Phys., 38, 2197 (1997)
Ahluwalia and Kirchbach argued that gravitational and quantum realms
require two invariant scales => gravitationally modified de Broglie

wavelength D.V.Ahluwalia, Phys. Lett, A 275, 31 (2000)



Ketsaris starts from a 7d-manifold and obtained a Maximal Acceleration

and Maximal Angular Velocity A. A. Ketsaris, Accelerated motion and
special relativity transformations

Quantum Special Relativity (QSR), Poincaré covariant formulation of QM,
which is applicable to massive particles propagating at velocities up to c,
Martin, B.R.; Shaw, G.. Particle Physics, (2008)

Amelino-Camelia suggests Quantum General Relativity (QGR) which
requires an appropriate extension of the k-Minkowski spacetime to some

sort of k-phase space intended as space x, t, p, E rather than just x, p.
Giovanni Amelino-Camelia, AIP Conf.Proc. 589, 137-150 (2001)



* The "Quantum Geometry” proposed in E.R.Caianiello, Nuovo Cimento,
59B, 350 (1980); E.R.Caianiello, G.Marmo, G.Scarpetta, Nuovo Cimento, 86A, 337 (1985)

predicts a maximal acceleration E.r.caianiello, Lett. Nuovo Cimento, 32, 65
(1981)

* With an upper limit on acceleration Scarpetta suggested
deformation of QSR G.Scarpetta, Lett. Nuovo Cimento, 41, 51 (1984)

* QGR was proposed by Brandt and Schuller H.E. Brandt, Found. Phys.
Lett., 2, 39, (1989), F.P. Schuller, Annals Phys., 299, 174, (2002)

* Due to Maximal Acceleration, quantum corrections to the

classical spacetime could be analyzed e.r. caianiello, A.Feoli, M.Gasperini
and G.Scarpetta, International Journal of Theoretical Physics, 29, 131 (1990)



Attempts to generalize GR

* Caianiello’s idea is that the simplest theoretical
framework, the one including the maximal proper
acceleration, must fulfill physical invariance.
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Attempts to generalize GR

Quantization as geometry in phase space or the quantum
corrections to the spacetime metric from the geometric phase
space quantization.

Additional dimensions or additional curvatures, i.e., geometry,
mimic the possible quantization of the fundamental tensor.

In spacetime the quantization are interpreted as curvature emerged
by the relativistic eight-dimensional spacetime tangent bundle

I'M = M, 1M,
The geometric theory for spacetime (quantum geometry)

predicts that the world lines are associated with physical il

particles having an upper bound for the proper (physical)
acceleration.

Caianiello derived the maximal proper acceleration from the
principles of quantum mechanics and relativity

2mc?

Y. ——
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Attempts to generalize GR

 Brandt proposed QGR

, 4 Dut Dv¥
S ds ds
Dv*  dv# 2 _

o = T ™ vt = dotfds

ds* = g, de"dz”

I 5 is the symmetric affine connection




Attempts to generalize GR

Born suggested duality-symmetry configuration of distance and momentum
of a free particle x¥ — yp* and p* — —Ax* Born Reciprocity Principle
B =ilel G e ),

Based on the assumption of invariant wave functions, the canonical

functions ., _O0H . 0H
= BT o

op;
* And components of the angular momentum, s, = P =MD,
are also invariant under the proposed transforuiauou.

* All these conclusions are assume to be equally valid
in classical and quantum mechanics.

where distance and momentum are four-vectors




Attempts to generalize GR

Therefore, following noncommutative relations were suggested

X', p;] = x'p; — p;x' = ind'
Validity of QM implies fundamental symmetry between space and
momentum: BRP tells that classical & quantum laws of Nature are symmetric.

Born also suggested another invariant transformation combining . .; . A A
both distance the momentum operators, quantum metric operator X; X"+ p;D

Coupling GR metric structure with spacetime coordinates
combining or exchanging distance Ax*, and momentum
uncertainties Ap” draw the conclusion that BRP introduces
dynamics to GR and reveals its phase-space structure




Our Attempt to generalize/quantize GR



Quantum Geometry:
Finsler/[Hamilton Geometry

Riemann geometry (M,g) so that at point x: Finsler geometry (M,F) so that at point x on M, Finslei
« metric tensor g = gV (x)dx"* @ dx", structure F(x, x) is related to the generalized metric
- length of curve ¢, [_/g*'(x)dx"dx" or tensor

1 92FZ2

s . d — : : R
[2\[g"(s)dirdids, where i = F =/g"(x)dx"dx’ and g:=

2 dxHaxv”

T,M
M

With the auxiliary four-momentum, F(x, x) = F(x,,po) , Where the
resulting F is fortunately 1-homogeneous of p,.

This allows the direct implication of RGUP, F(x,, po)=F(xq, 0po),
where|¢ =1 + BpEpop

The resulting F(x,, opy) 1s 1-homogeneous of p,, as ¢ is indeed 0-
homogeneous in p,.




Finsler-Hamilton Manifolds

 Fis +ive for x # 0 on tangent bundle TM & homogeneous of
degree 1 in j,

 therefore, on TM, at local coordinates (x, x)
F(x,ax) = aF(x,x), V)L.eR*

- and the ratio of lengths of any two collinear vectors doesn’t
include metric functions.

- In Finsler geometry, the special case F(x, x) = \/g"’(x)dx*dx’
distinguishes Finsler from Riemann geometry; a relaxation of
quadratic restriction
Notices Amer. Math. Soc. 43(1996) 95.

+ The length of a curve c is given as [ F(x, x) or fSSIZF(x“(s),;if“(s))ds.



Finsler-Hamilton Manifolds

Based on 1-homogeneous F(x,ax) = aF(x,x),Va€ R* we assume a
free particle with mass m

Then, F(x, mx) =mF(x,x) = F(x, mx), VmeEeR?

With the auxiliary four-momentum, F(x, x) = F(xy, po) , Where the
resulting F is fortunately 1-homogeneous of p,.

This allows the direct implication of RGUP, F(x,, py)=F(xq, 0po),
where ¢ =1+ BPEPUP

The resulting F(x,, ¢py) Is 1-homogeneous of p,, as ¢ is indeed 0-

homogeneous in p,.
The Klein metric can be generalized as

Pt gy — | EBRIERE + (2h - i%)°
| 1—|2P

1/2

R. S. Hamilton, Three manifolds with positive Ricci curvature, J. Differential Geom. 17, (1982), 255-306.



Finsler-Hamilton Manifolds

Finsler manifold: tangent bundle (TM,7,M), M is nd C~-manifold.
Hamilton manifold: cotangent bundle T*M of finite-dimensional
manifold M equipped with a regular Hamiltonian. Hamilton manifold:
cotangent bundle (T*M, =*, M).

* Dualization between Finsler and Hamilton geometries, i.e., a nonlinear
connection (TM, =, M) - (T*M, =*, M), because the geometric structure
of T*M, TT*M is different from TM, TTM,

* Hamilton H(x,p) can only be obtained from Finsler F(x,v) by Legendre
transformation.
* F(x,v) = F(x,p) is obtained solely from homogeneity of Finslerian F.



Finsler-Hamilton Manifolds

Klein metric is among pg |2 — |z51% 8] +

2 ( 2 <$ﬁ=pg>2
simplest Finsler metric F=(zq,9p5) = ¢ (1 — |zF[2)2
0

With the Hessian and anisotropic transformation of the components of the
corresponding Finsler metric tensor

1 2
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i (2 2wt 5 o 5

4 F3 ( | h,Fg) oI O - 2xF?
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Quantized Fundamental Tensor

By equating the line element in Finsler space with the one in Riemann space,
the generalized fundamental tensor in Riemann space becomes

dzg dxd
d¢r  d¢v

Juv = Jab(T)

N | drly dz¥  m? o dpl dp}
= gz O Fb0) (s + 5 -+ 290 0 21

where .% = m.@/ represents a proper maximal force with 7 is the maximum proper acceleration,

' = c'|Gh.



Quantized Fundamental Tensor
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The symmetric metric da, should NOT be vanishing as ¢ is positive finite



Quantized Fundamental Tensor
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Quantized Fundamental Tensor

~ 2 KO o
Guv | = ((?5‘ + 2 F
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¢ = 1+ BpoPop
Klein\Metric

v

Quantized Metric Tensor
on Riemann Manifold

B = BoG/(c*h) = Bollp/B)? o =|(TJRG)Y/2

— 2
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RGUP Approach
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Phase-Space Finsler Geometry
v

Classical Metric Tensor on
Riemann Manifold




Quantized Fundamental Tensor
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] Quantum Operators
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Roles of ¢ = 1+ Bphio,

0-homogeneous Phi plays multiple roles. The phase-
space metric and whose relation to Finsler structure ¢

|
f—
.
®
T
o
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S
S
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By multiplying both sides with F and expressing Fas F F' = (1 + BFQ)F

By assuming that = BF3 F =F+8
The first term F could be related 72 10, v ,
to the Riemann metric = 9w ¥y, where y =z € T,M
The second term must be one- 3 should be expressed as 8 = b;(x)y* with
form on manifold Matpointp |||}, := sup,cr, 1/ (B)/F(y)

¢ is capable of retaining the special curvature properties of the Randers metric.

geometrical “unification” of the gravitation and electromagnetism interactions
Phys. Rev. 59 (1941) 195-199



% Non-linear metric space

‘C  Quadratic restriction on F?=g,,.(x)dx"*dx" I

=" — arc length, curvature & Euler-Lagrange %/‘W%[f

x Legendre map RISy

[T cotangent space tangent space

© L d f F =

c egenare transiorm (x, v) => Descritized Finsler Structure

(o) H(x, p), Hamilton Structure
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Generalization

Generalization

(" Finslerian Extension of GR )
Finsler Geometry (Phase Space)
Finsler Structure F(x,v) and g.s(x)

General Relativity (GR)

Riemann Geometry (4 dimensions)
Manifold M and metric tensor g,,

4 . . N
Klein Metric —

X gan(X) - Guv )

4 N

d S Finsler:d S Riemann

4 : )
Generalized Quantum Theory
(Relativistic) generalized HUP

9 (Relativistic) Gravitational Fields

[ Quantum Theory (QT) h
Heisenberg Uncertainty Principle (HUP)

J

DA =TS i

L No Fields including Gravitation y




Constructing GR: Metric Tensor
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and therefore at small 3, we also find that 8¢ = 8 and
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Constructing GR: Metric Tensor

at small 3. we also find that 8¢ = 8 and
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* a geometric object connecting nearby tangent (curved) e .
spaces, i.e., permitting differentiability of the tangent === VP o s
vector fields or assuring them restrict dependence on LTy

manifold in a fixed vector space,

* a function assigning to each tangent vector and each
vector field a covariant derivative or a new tangent
vector.

In differential geometry, the generic form of affine connection reads

)u.x — {)\ } T I AV ‘)( AL, T Qu)\ u)\)
Christoffel Levi-Civita connection Covariant derivative of Torsion
symbol metric

iu} K Av 9 (T{‘i v -T;L.u _ .Trfj)\) Q*U’U)‘ - _D:“* (P)g”/\ va - Fiu o rﬁ)\ — QFF)\V]



Constructing GR: Affine Connection

GR assumes torsion-free and metric compatibility.
The latter implies linear independence of partial derivative tangent vectors and a
flat space that can be found locally in a suitable frame (like Mikowski space),

_ ~H
}\u {)\ } + ks )\u 9 ((-2)\:; T (-guf»\ -2 u}\)

Christoffel Levi-Civita connection Covariant derivative of Torsion
symbol metric
: [ L AL Tk _ A R ol B _ oM
;u} Ky, = §(T.)uf —Ty, _Tv.A) Quux = D:U(F)g”/\ Iy, =1 =1 QP[}W]
,},, 1

Fﬁ# - Egm(gﬂrﬁ,n T Jap,f — Qﬁmﬂr)



Constructing GR: Affine Connection

[';, = 59%"(9ap.u + Jop,s — 9Bu.c)
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Constructing GR: Geodesic Congruence

The proper time can be expressed as —c2dz? = ds* = :,;Jr,_,mcbf:"""‘(,bc"ri

T

The Euler-Lagrange equations can be derived by the variational methods

d_ oL dL
do 9(dx' /do) ~ OX!

= 0,



Constructing GR: Geodesic Congruence

oL —L (09,5 dz® di” 2k m? | , di® di?
. = C == Qo ;A0 ]. — 1 23 - ol Fz -
0" 2 { 98 dr dr | 9P (P0)? i (L+200000) | £ dr dr
d oL 7 A R N 1 [ 0Ga~ N 0G5\ di® diP
— —L|gy——— + — : — .
do 0(dz" /do) Jor g T 9\ 98 T Gix ) dr dr

Then, the generalized geodesic equations read

0 d?z™ dz® dxP
cmdx dx’ + I'§, = 0,

d®x*  ~a dx° dxP _ 8sp
28, 7 dr dr’ dr? b dr dr

l_' —
dr? Lo dr dr
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* The difference between the geodesic equations for ga8 and the ones for
Jap 1s not negligible.

( )
2.0 ) 5] 2 ) 5}
dx dx’ dx FZ [ gsg .odx® da |

o | =cf + 0§ + 05 — 97 g5

9 + 1 ?.-5' — | ~ g
dT “dr dr 2C | Gan dr dt
§ J

* The impact of such additional contributions to the emerged geometric
structures and curvatures extends the GR’s applicability to cover both low
and large scales.



GR?s Sensical Predictions

o

1 o 9.9 dxg d'r’[‘; m? dpn dp};
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Additional Curvatures

Additional Connections

~

Additional Structures

Insights on Quantum Gravity
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Einstein-Gilbert Straus Metric

* When combining FLRW and Schwarzschild metrics so that the
Schwarzschild metric becomes embedded in an expanding Universe, one
refers to the Swiss—cheese model of the Universe which was suggested by
Einstein and Straus in the 1940s. Rev. Mod. Phys., 17(1945)120-124

* The Swiss-cheese model was an early attempt to approach the Universe

as lumps of cosmic substance which is inhomogeneously interspersed with
holes or voids.

* This was correctly formulated by Gilbert Monthly Notices of the Royal
Astronomical Society, 116(1956)678-683



Einstein-Gilbert Straus Metric

e The EGS metric rads

ds® = (1 — 2A{) dit” — a(tQ)M dr® — a(t)r*dQ?,

r

.'I"i
where dQ? = df? + sin” Od¢? is the standard metric on the surface of two-sphere.

* Imposing M (r, t) requires incorporating an overall expansion, for instance,
finite cosmological constant A

* For the sake of simplicity, let us assume that the so-called Einstein—Straus
vacuole forms exact spheres



Einstein-Gilbert Straus Metric

4 ;
Mr1) = gﬂ'f(t)?‘d.

* The arbitrary function f(t) expresses the evolution of the cosmic substance
with the cosmic time t. To scale r with t, let us suggest that

flll = 12 tanh (i)

H H

il
ds? = (1 _ ZMS" i %Aﬁ)dﬁ _ a(t)(l _ ZMEF’ H _ %Arz) dr — a(HrrdQ?



Riamann Curvature Tensor

Accordingly, the Riemann curvature tensor reads

Rg#y R‘B;_Lu Conventional Riemann Curvature Tensor
F-T 4 F-T + F AR + I Connections &
oV, B,y oV, Bu,v QM imprints
FZ

+ |56 ( 3 (957 9o + 9% Govp + 95 980 + 977 9500 )

.

Metrics, Geometric Structures & QM imprints



Ricci Curvature Tensor

Ricci curvature tensor can be deduced by contraction of Riemann curvature
tensor or derivations of the affine connections

m @ Conventional Ricci Curvature Tensor

C ti &
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Metrics, Geometric Structures & QM imprints
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Evolution of Expansion
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* One would rightfully argue that the emerged curvatures might be
artifacts in some coordinate systems.

* An assessment would be feasible by the basic polynomial curvature

iInvariants in GR, namely, the Ricci and Kretschmann invariant
scalars.

R = gﬁyRﬁm R = Hﬁy}?ﬁb‘

K = RWﬁﬂ”R’}fﬁgm k — Rr}/ﬁﬂy}?’?ﬁ#“
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Conclusions

* The proposed guantization seems to unveil quantum-conditioned
curvatures whose intrinsicality, essentiality, and reality are assessed by
finite Ricci and Kreschmann invariant scalars.

* The additional sources of gravity
* |) arise In the relativistic guantum regime,
* i) are overcast at nonrelativistic classical regime, and
* |lI) are apparently overlooked in Einstein’'s GR.

* We conclude that the proposed quantum geometrical approach would
be rather supposed to represent an appropriate mathematical
framework for the emergence of quantum gravity.



Thank You!
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