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Modified Gravitational Theories

MGTs have been the subject of great interest in cosmology and
provide a convincing way for settling the issue of
cosmic acceleration. The concept that gravity is not described
precisely by GR but rather by some alternative theories has been
viewed for several years.
There are various ways to modify GR incorporating “quadratic
Lagrangian”, consisting of second order curvature invariants such
asR2, RαβRαβ , RαβγδRαβγδ, CαβγδCαβγδ.
Therefore, the general modification of GR action is of the form

I =
1

2κ2

∫
dx4√−gf (R,RαβR

αβ,RαβγδR
αβγδ, ..)

+

∫
dx4√−gLm(gαβ,Ψm). (1)
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Modified Gravitational Theories

Such theories involve the higher order derivatives and allow the
dynamical equations to be higher than second order.

Modifications of gravity have received significant attention in order
to explain the cosmic acceleration. In this respect, a particularly
interesting modification is to replace the linear dependence of scalar
curvature with the more generic function and resulting action is
named as f (R) gravity [Nojiri, S. and Odintsov, S.D.: Int. J.
Geom. Methods Mod. Phys. 4(2007)115.].

f (T ) gravity (T being the torsion), f (R,T ) gravity (T being the
trace of Tµν), f (R,T ,Q) gravity (Q = RµνT

µν), Scalar Tensor
theories, Brans-Dicke theory, Gauss-Bonnet gravity etc.

April 4, 2024 3 / 41



Modified Gravitational Theories

Minimal and Non-minimal Coupling:

MGTs are constructed by incorporating the geometric
part whereas matter contribution is considered as
additional term in Lagrangian. Nevertheless one can
put further modification by introducing direct
coupling between matter and curvature components;
such theory is named as
non-minimally coupled gravity.
Such couplings were initially proposed in [Nojiri, S. and Odintsov, S.D.:
Phys. Lett. B 599(2004)137][Allemandi, G. et al.: Phys. Rev. D
72(2005)063505].
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Modified Gravitational Theories
Bertolami et al. [Phys. Rev. D 75(2007)104016] put a new twist
on f (R) gravity by considering the Lagrangian as a function of
scalar curvature and explicit coupling between scalar curvature term
and matter Lagrangian density. The action of f (R) gravity with a
non-minimal gravitational coupling to matter is given by

S =

∫ √
−gdx4{ 1

2κ2 f1(R) + [1 + λf2(R)]Lm}. (2)

The parameter λ characterizes the strength of non-minimal
coupling of f2(R) with matter Lagrangian.
A more generalized form of f (R) gravity is suggested in [Harko, T.
and Lobo, F.S.N.: Eur. Phys. J. C 70(2010)373], where the
Lagrangian is an arbitrary function of Ricci sclar R and of matter
Lagrangian Lm i.e., L = f (R,Lm).

S =
1
2κ

∫ √
−gdx4f (R,Lm) + S(m)(gµν , ψm),
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Modified Gravitational Theories

In [Harko et al.: Phys. Rev. D 89, 124036 (2014)] developed a
modified f (T ) model, allowing a non-minimal coupling between the
torsion scalar and the matter Lagrangian, whose action is given by

S =
1

2κ2

∫ √
−gdx4e{T + f1(T ) + [1 + αf2(T )]Lm}, (3)

where fi (T )(i = 1, 2) are arbitrary functions of torsion scalar and
α is the coupling parameter.
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Modified Gravitational Theories

In [Kofinas and Saridakis Phys. Rev. D 90(2014)084044], Kofinas
and Saridakis proposed a modified theory involving both torsion
scalar T and the teleparallel equivalent of Gauss-Bonnet term TG

as basic ingredient, defined by the following action

S =
1

2κ2

∫
M
d4xef (T ,TG ) + Sm, (4)

where e = det(eaµ) =
√

|g | and κ2 = 8πG . In some certain limits
of the function f (T ,TG ), other theories like GR, TEGR,
Einstein-Gauss-Bonnet theory etc. can be discussed.
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f(R,T) Gravity

In 2011, Harko et al. [Phys. Rev. D 84(2011)024020] presented a
new modification of Einstein Lagrangian by introducing an arbitrary
function of scalar curvature R and trace of the energy-momentum
tensor T . The action of f (R,T ) theory of gravity is given by

S =
1

2κ2

∫ √
−gdx4f (R,T ) + S(m)(gµν , ψm), (5)
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f(R,T) Gravity

In general f (R,T ) gravity models, the matter energy
momentum tensor is not covariantly conserved, it follows that
motion of test particles is nongeodesic and an extra
acceleration is always present due to the coupling between
matter and geometry [Phys. Rev. D 84(2011)024020].
This situation is similar to the case of f (R,Lm) gravity and
f (R) gravity with non-minimal coupling to matter.

In this modified gravity cosmic acceleration may result not
only due to geometrical contribution to the total cosmic
energy density but it also depends on matter contents. This
theory can be applied to explore several issues of current
interest and may lead to some major differences.
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f(R,T) Gravity

Field equations of f (R ,T ) gravity

Rµν fR(R,T )− 1
2
gµν f (R,T ) + (gµν2−∇µ∇ν)fR(R,T ) = 8πGTµν

− fT (R,T )Tµν − fT (R,T )Θµν , (6)

2 : ∇µ∇µ, ∇µ: the covariant derivative associated with the Levi-Civita
connection of the metric, f : arbitrary function of R and T ; fR : ∂f /∂R,

fT : ∂f /∂T , Θµν =
gαβδTαβ

δgµν .

In f (R,T ) gravity, the divergence of the energy-momentum tensor is not
covariantly conserved and is given by

∇αTαβ =
fT

κ2 − fT

[
(Tαβ +Θαβ)∇α ln fT +∇αΘαβ − 1

2
gαβ∇αT

]
.(7)
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Gravitational Decoupling by MGD
Ovalle [Ovalle, J. (2017). Phys. Rev. D, 95, 104019] proposed the idea
of gravitational decoupling by means of Minimal Geometric
Deformation (MGD)— highly versatile tool

Seed matter content Tαβ + New gravitational source

Tαβ −→ T̃
(n)
αβ = Tαβ + β̃(n)T̂

(n)
αβ . (8)

Here, β̃ is a dimensionless coupling parameter.

After combining two different sources, a system of field
equations is formulated.
One needs to introduce transformation onto the metric
potentials∗ of M−

χ(r) 7→ ζ(r) + β̃k(r), e−ψ(r) 7→ η(r) + β̃h∗(r). (9)

* The inner geometry of the compact structure is defined by

ds2 = −eχ(r)dt2 + eψ(r)dr2 + r2(dθ2 + sin2 θdϕ2),

April 4, 2024 11 / 41



Isotropic seed
space–time
β̃ = 0

E–MGD
β̃ ̸= 0
h∗ ̸= 0,
k ̸= 0

mass
function

Gravitati-
onal

redshift

Observer
proper
time

MGD
β̃ ̸= 0
h∗ ̸= 0,
k = 0

mass
function

Gravitati-
onal

redshift

Figure: From to non–deformed space–time to a minimally
deformed/completely deformed space–time by MGD/e–MGD, respectively
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f (R ,T ) +MGD formalism

The action for the f (R,T ) theory of gravity with Lφ as Lagrangian density for an
additional source φαβ assumes the form

I =
1
2κ

∫
f (R,T )

√
−gd4x +

∫
[Lm + β̃Lφ]

√
−gd4x . (10)

Varying the gravitational action with respect to gαβ , yields

Gαβ =
1
fR

[
(8π + fT )Tαβ + (

f − RfR
2

)gαβ + (∇α∇β − gαβ2)fR

+PgαβfT + 8πβ̃φαβ
]
= T̃αβ . (11)
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Substituting the expressions evaluating from usual definition of Tαβ
for perfect fluid into the field equations (11), one gets[

1
r2 + e−ψ

(
ψ′

r
− 1

r2

)]
fR = ρ̃, (12)[

e−ψ
(
χ′

r
+

1
r2

)
− 1

r2

]
fR = P̃r , (13)

e−ψ
[
χ′′

2
− ψ′

2r
+
χ′

2r
− ψ′χ′

4
+
χ′2

4

]
fR = P̃t , (14)

where,

ρ̃ = (8π + fT )ρ−
f − RfR

2
+ pfT − e−ψ

[
f ′′R − f ′R

(
ψ′

2
−

2
r

)]
+ 8πβ̃φ0

0,

(15)

P̃r = P +
f − RfR

2
+ e−ψ

(
χ′

2
+

2
r

)
f ′R − 8πβ̃φ1

1, (16)

P̃t = P +
f − RfR

2
− e−ψ

[(
ψ′ − χ′

2
−

1
r

)
f ′R − f ′′R

]
− 8πβ̃φ2

2. (17)
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Selection of f (R ,T ) function and limitations of MGD

f (R,T ) = R + λT , λ is a dimensionless coupling constant

1 For the complex f (R,T ) functions, the new emerging sectors
will be too complex to solve analytically.

2 The second issue arises when one deals with matching
conditions across the boundary.

The pure matter sector given in (15)-(17) has the form

ρ̄ = ρ+
λ

16π
(3ρ− P) + β̃φ0

0, (18)

P̄r = P −
λ

16π
(ρ− 3P)− β̃φ1

1, (19)

P̄t = P −
λ

16π
(ρ− 3P)− β̃φ2

2, (20)
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Mass Function

The mass function is also affected in this formulation and
gravitational mass of stellar structure takes the form as

m̃(r) = 4π
∫ r

0
ρr2dr +

λ

4

∫ r

0
(3ρ− P)r2dr +

+4πβ̃
∫ r

0
φ0

0(r)r
2dr . (21)

This expression contains all the contributions coming from MGD,
and f (R,T ) gravity.

Here, it is important to mention that the above expression for the
mass m̃(r) is going beyond the pure GR scope. This scenario
facilitates the construction of more compact objects, at least on
theoretical grounds. Moreover, the case for the limits λ = 0 and
β̃ = 0, yields the usual mass function in the arena of GR.

By setting β̃ = 0, we obtain mass function for f (R,T ) gravity.
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Splitting of f (R ,T ) Field Equations Through MGD

Plugging the linear transformation in field equations (12)-(14) and
comparing the expressions for β̃ = 0, one gets

8πρ+
λ

2
(3ρ− P) =

1
r2

−
η

r2
−
η′

r
, (22)

8πP +
λ

2
(3P − ρ) = η

(
χ′

r
+

1
r2

)
−

1
r2
, (23)

8πP +
λ

2
(3P − ρ) = η

(
χ′′

2
+

(χ′)2

4
+
χ′

2r

)
+
χ′η′

4
+
η′

2r
, (24)

with explicit expressions for ρ and P , given by

ρ =
1

(8π + λ)(8π + 2λ)r2

[
(8π +

3λ
2
)(1 − rη′ − η) +

λ

2
(ηχ′r − 1 + η)

]
,

(25)

P =
1

(8π + λ)(8π + 2λ)r2

[
(8π +

3λ
2
)(ηχ′r − 1 + η) +

λ

2
(1 − rη′ − η)

]
.

(26)

April 4, 2024 17 / 41



The second set of quasi-Einstein equations is given by

8πφ0
0 = −h∗′

r
− h∗

r2 , (27)

8πφ1
1 = −h∗

r

(1
r
+ χ′

)
, (28)

8πφ2
2 = −h∗

4

(
2χ′′ + χ′2 +

2χ′

r

)
− h∗

′

4

(
χ′ +

2
r

)
. (29)

with conservation equations

P′ + (ρ+ P)
χ′

2
=

λ

8π + λ
(ρ′ − P′), (30)

(φ1
1)

′ −
χ′

2
(φ0

0 − φ1
1)−

2
r
(φ2

2 − φ1
1) = 0. (31)

Eq.(30) is modified TOV equation in f (R,T ) framework.
We describe physical variables in total form as follows

ρ(tot) = ρ+ β̃φ0
0, (32)

P(tot)
r = P − β̃φ1

1, (33)

P
(tot)
t = P − β̃φ2

2. (34)
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Matching conditions

A space–time representing a compact object is divided
by a hypersurface Σ into two distinct regions that are
termed as interior and exterior space–times.
The interior space–time M− must match to the
corresponding exterior space–time M+ smoothly at Σ.
Israel-Darmoise matching conditions.

The continuity of the
first fundamental form:
[ds2]Σ = 0

⇒ (g−
00 = g+

00)|Σ
(g−

11 = g+
11)|Σ.

The continuity of 2nd
fundamental form:
[K 1

1 ]Σ = 0
⇒ Pr (Rb) = 0

[K 2
2 ]Σ = [K 3

3 ]Σ

⇒ m(R) = M
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Matching conditions

The matching conditions are of fundamental importance in the
study of stellar objects. The smooth matching of the interior
M− and the exterior M+ geometries at the surface of stellar
configuration, defined by Σ ≡ r = R, is required to ensure a
well–behaved compact structure.
In the present case, the matching conditions are unknown and
in principle the Israel-Darmoise matching conditions might not
work.
This is so because the Israel-Darmoise conditions derived in
the GR scenario are using the vacuum outer solution ı.e., the
Schwarzschild solution.
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In f (R,T ) theory, we have some extra junction conditions as
presented in [J. L. Rosa, Phys. Rev. D 103, (2021) 104069],i.e.,

[R]Σ = 0, [∂cR]Σ = 0, (35)
[T ]Σ = 0, [∂cT ]Σ = 0.

First two conditions also exists in the framework of f (R)
theory, for the models having f ′′(R) ̸= 0 [J. M.M. Senovilla,
Phys. Rev. D 88, (2013) 064015], for example the
Starobinsky model.

Extra conditions can be discarded or trivially satisfied via
choice of a particular form of the f (R,T ) function,
Particularly if we choose f (R,T ) = R + λT .
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In the case of f (R,T ) gravity theory, the equivalent solution is
not known and its determination depends upon of the shape of
the f (R,T ) function. Moreover, the presence of the trace T
of the energy-momentum tensor would lead in principle to a
non-vacuum exterior space-time.
Moreover, when the MGD or e-MGD are applied, the exterior
space-time is receiving contributions coming form the θ-sector,
therefore, even in the GR case (in the presence of MGD or
E-MGD) the Israel-Darmoise conditions could become invalid.
So, the junction condition process deserves a thorough and
exhaustive study in the context of pure f (R,T ) and
f (R,T )+e-MGD.
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Matching conditions
Let us start by analyzing in general, the possibility of having a
vacuum exterior space-time in the f (R,T ) context (β̃ = 0).
[S.K. Maurya, A. Errehymy, Ksh.N. Singh et al. Phys. Dark Univ. 30 (2020)

100640]

So the field equations has the form

Rαβ =
1
fR

[
Tαβ − (Tαβ +Θαβ) fT +

1
2
gαβf − (gαβ2−∇β∇α) fR

]
.

Next, the f (R,T ) function can be seen as the contribution of
a purely geometric and matter parts as follows

f (R,T ) = f1(R) + f2(T ).

So, taking the vacuum case, that is Tαβ = 0(→ T = 0), one
obtains

Rαβ =
1
f1R

[
1
2
gαβ(f1(R) + f2(T ))− (gαβ2−∇β∇α) f1R

]
.
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Matching conditions

Thus, it is clear that a vanishing energy-momentum tensor in
the framework of f (R,T ) gravity theory does not mean a null
Ricci tensor like in GR.
Moreover, Tαβ = 0 does not imply f2 = 0, of course this term
could contributes with a constant term for example, if f2(T )
function containing an exponential term.
However, if Tαβ = 0 ⇒ f2(T ) = 0, the outer manifold is
affected by the geometric terms encoded in f1(R) and f1R .
This last situation also happens in f (R) gravity theory,
however in [B. Whitt, Phys. Lett. B 145, 176 (1984)] it has been
shown that in Einsteins frame that Schwarzschild solution is
the only static spherically symmetric solution for an action of
the form R + aR2

The simple linear model f (R,T ) = R + λT is a good
candidate to explore compact structures in order to compare
some relevant aspects with GR.
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When the MGD is applied, the exterior space-time receives
contributions coming from the φ-sector.
In this scenario, the exterior region will be represented by the
deformed Schwarzschild metric, which is given by

ds2 = −(1 − 2M̃
r

)dt2 + (1 − 2M̃
r

+ γ̃g∗(r))−1dr2

+r2(dθ2 + sin2ϕdϕ2), (36)

where
g∗(r) is the deformation function, related to φ+

αβ

M̃ is the total mass in the exterior region
From the continuity of 1st and 2nd fundamental forms, we have

eχ(Rb) = 1 −
2M̃
Rb

, e−ψ(Rb) = 1 −
2M̃
Rb

+ γ̃g∗
Rb

(37)

(P)−Rb
+ β̃

h∗Rb

8π

(
1

Rb
2 +

ψ′
Rb

Rb

)
=

γ̃g∗
Rb

(
Rb

2 − Q2)
8πr2(Rb

2 − 2M̃Rb + Q2)
. (38)
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Field Equations for Deformed Exterior Region

In addition, the decoupling of the Schwarzschild vacuum solution
(T+

αβ = 0) and the additional external source (φ+
αβ ̸= 0) provides

the set of equations (27)-(29) for the exterior region (r > rΣ = Rb)
in the following form

8π(φ0
0)

+ = −g∗

r2 − γ̃g∗′

r
, (39)

8π(φ1
1)

+ = − g∗

r(r − 2M̃)
, (40)

8π(φ 2
2 )

+ =
M̃(r − M̃)

r2(r − 2M̃)2
g∗ − (r − M̃)

2r(r − 2M̃)
g∗′

. (41)
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Gravastars

The gravitational vacuum star (gravastar), proposed by Mazur and
Mottola [Mazur, P. O., and Mottola, E.:Report No. LA-UR-01- 5067,

arXiv:gr-qc/0109035], is an interesting mathematical model for the
description of an extremely compact stellar structure.

It consists of three distinct regions:
P = −ρ (an inner space–time)

P = ρ (intermediate thinshell)

P = 0 = ρ (an outer
space–time)
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Gravastars in f (R ,T ) Gravity
We considered dark energy EoS for the interior of stellar
system (r ≤ Rb), given by

P = −ρ. (42)

Using EoS (42) in Eq.(30), we have

ρ = ρ0. (43)

where ρ0 is constant. Thus, Eq.(42) becomes

P = −ρ0. (44)

The gravastar solution with the undeformed metric functions
{χ, η} in explicit forms is

eχ = C2(1 − I 2r2), η = 1 − I 2r2 (45)

where

I 2 =
(8π + 2λ)ρ0

3
=

2M
Rb

3 =
RS

Rb
3 . (46)
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MGD Gravastars in f (R ,T ) Gravity

For the solution of system of equations related to the anisotropic
sector, we need to determine h∗(r)

We considered a main characteristic of gravastar structure,
i.e., g00 = g−1

11 = 0, at the surface r → Rb = RS .

This situation leads to

h∗(r) = (1 − I 2r2)I nrn, with n ≥ 2 (47)

The deformed radial metric component assumes the form as

e−ψ = (1 − I 2r2)(1 + β̃I nrn), (48)

with regularity condition

β̃ ≥ −1. (49)
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The particular expressions for physical variables are

ρ(tot) =
3I 2

8π + 2λ
+ β̃

I nrn−2

8π

[
(n + 3)I 2r2 − n − 1

]
, (50)

P
(tot)
r = −

3I 2

8π + 2λ
− β̃

I nrn−2

8π

(
3I 2r2 − 1

)
, (51)

P
(tot)
t = −

3I 2

8π + 2λ
− β̃

I nrn−2

8π

[
(n + 3)I 2r2 −

n

2

]
, (52)

with the anisotropic factor given by

∆ ≡ P
(tot)
t − P

(tot)
r =

β̃I nrn−2

16π

(
n − 2 − 2nI 2r2

)
. (53)

The Eqs.(50)-(52) describe an anisotropic non-uniform gravastar structure
which is ultracompact, with necessary and sufficient conditions for the smooth
joining at the boundary

1 −
2M̃
Rb

+ γ̃g∗
Rb

= 0, (54)

−
(

3
8π + 2λ

+
2β̃
8π

)
=

γ̃g∗
Rb

8π(Rb − 2M̃)
. (55)

.
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Standard Schwarzschild solution

Here, we have two cases for the exterior region:
1 Standard Schwarzschild solution
2 Deformed Schwarzschild solution

For standard SS, we set g∗(r) = 0. then Eq.(55) yields

β̃ = − 12π
8π + 2λ

.. (56)

For compatibility with regularity condition, we must have

λ ≥ 2π(1 − α̃2Rb
4). (57)

Thus, we have a family of deformed interior solutions corresponding to (57), in
such a way that interior MGD gravastar solution and exterior schwarzschild
solution smoothly match with each other, for Rb → RS .
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Schwarzschild- (Black)

Junction surface

Deformed interior
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Figure: Variation of the interior total energy density ρ(tot) > 0 and interior total
radial pressure P

(tot)
r < 0 for n = 2 (Dashed), n = 3 (Dotted) and n >> 2 (Solid),

while exterior solution is represented by the Schwarzschild solution.
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Deformed interior

Junction surface

Schwarzschild- (Black)

�=6.3 (Red)
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Figure: Variation of the total energy density ρ(tot) (Solid lines, above the x-axis),
total radial pressure P

(tot)
r (Solid lines, below the x-axis) and total tangential pressure

P
(tot)
t (Dashed lines), for n = 2.
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Deformed Schwarzschild solution

In this case, the outer space–time receives some contributions from the
so-called anisotropic sector, i.e., φ-sector, due to the non-zero g∗.

Among different choices, we considered an exterior source φ+
αβ , that

satisfies the traceless condition, i.e., φ+α
α = 0.

The exterior deformation function assumes the form

g∗(r) =
1 − 2M̃/r

2r − 3M̃
ℓc . (58)

Thus, we obtained a conformally deformed Schwarzschild solution as follows

e−ψ =

(
1 −

2M̃
r

)(
1 +

ℓ

2r − 3M̃

)
. (59)
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The second fundamental form (55) yields the following expression for ℓ

ℓ = −8π(
3

8π + 2λ
+

β̃

4π
)M̃. (60)

The above condition together with (59) leads to the result that e−ψ will be
positive for all ‘r ’ such that

r ≥
(

3(8π + λ)

8π + 2λ
+ β̃

)
M̃. (61)

The following expression can be extracted for β̃

β̃ =
λ− 8π
8π + 2λ

. (62)

In order to preserve regularity condition in the interior region, we must have

λ ≥ 0. (63)
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DeformedSchwarzschild- (Blue)

Schwarzschild- (Black)

�=0 (Red)
�=12 (Blue)
�=24 (Green)
�=36 (Magenta)

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

r [km]

e
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Figure: Evolution of interior as well as exterior radial metric component
for the MGD gravastar, with respect to r .
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The expressions for the state parameters in the exterior region
are

ρ(tot)+ = γ̃(φ 0
0 )+ = −

ℓM̃

8π(2r − 3M̃)2r2
, (64)

P
(tot)+
r = −γ̃(φ 1

1 )+ =
ℓ

8π(2r − 3M̃)r2
, (65)

P
(tot)+
t = −γ̃(φ 2

2 )+ = −
ℓ(r − M̃)

8π(2r − 3M̃)2r2
, (66)

with anisotropic factor

∆+ =
ℓ(3r − 4M̃)

8π(2r − 3M̃)2r2
. (67)
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Deformed interior
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Figure: Variation of the interior total energy density ρ(tot) > 0 and interior total
radial pressure P

(tot)
r < 0 for n = 2 (Dashed), n = 3 (Dotted) and n >> 2 (Solid),

while exterior solution is represented by deformed Schwarzschild model.



Deformed interior

DeformedSchwarzschild- (Black)

Junction surface

�=0 (Red)
�=12 (Blue)
�=36 (Green)

0 1 2 3 4 5 6

-0.04

-0.02

0.00

0.02

0.04

0.06

r [km]

ρ
(t
o
t)
,
P
r(
to
t)
,
P
t(
to
t)

Figure: Variation of the total energy density ρ(tot) (Solid lines, above the x-axis),
total radial pressure P

(tot)
r (Solid lines, below the x-axis) and total tangential pressure

P
(tot)
t (Dashed lines), for n = 2.



Concluding Remarks

An anisotropic version of an ultracompact stellar structure of
radius RS = 2M, has been developed in the framework of
f (R,T ) gravity.
Smoothly joins the standard Schwarzschild solution for all
λ ≥ 2π.

Smoothly matches with Deformed Schwarzschild solution for
all λ ≥ 0, however, stable solutions have been obtained only
for 0 ≤ λ ≤ 8π.
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