Bootstrapped Newtonian compact objects

Star-UBB Institute
Seminar Series in Gravitation, Cosmology and Astrophysics

by dr. Octavian MICU
work done in collaboration with dr. Roberto Casadio




Plan of the talk

The Lagrangian and the equation of motion
Outer vacuum and boundary conditions

Stars and black holes with uniform density
Polytropic stars

Masses of bootstrapped Newtonian objects
Binary mergers, mass gap and area law

Stability of bootstrapped Netwonian dense stars

Conclusions




Bootstrapped Newtonian gravity

* Motivation:

* Gravity is tested in the weak-field regime, many orders of magnitude below where it becomes dominant, regime in
which results are in very good agreement with general relativity;

* Perturbative approaches fail in strong gravitational fields (reason being that all terms in the series contribute
roughly the same an the series cannot be truncated);

* Singularity theorems of general relativity require black holes to collapse all the way into a region of vanishing
volume and infinite density;

* There are some corpuscular proposals for black hole interiors which would solve the problem of the singularities.
* Bootstrapped Newtonian gravity

* Bottom-up approach;

* It allows us a fresh new look into (extremely) dense self-gravitating stars;

* It allows for highly compact objects with regular densities due to the absence of a Buchdahl limit.
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Bootstrapped Newtonian Lagrangian (physrev.n 98 2018) 10, EurPhys. 1. 79 2019) 1]

* The bootstrapped Newtonian Lagrangian

LV] = In[V]— 47?/ 2 drlgy T V+a, T,V +a, T, (0 + a0 T)]
0

o (V)
- _4”/0 = dr 37 Gy (1—4dqvV)+(p+3gp)V(L—2q,V)

Newtonian part:

00 i 7\ 2
In[V] = —47 / 2 ar | V) LoV gravitational self-coupling : (non-negligible) pressure contribution:
| - Uy _ [V/(r) 7o U
Jv = —— = p = =9op
l vV~ 271Gy %

r? (7“2 V’)/ = AV =47nGpnp
higher order term: 7, = -2V~

1—4q,V 2qV(V’)2
1—4qyV  1—4qgyV

o 55,

AV =47Gn (p+ 3q,p)

* Euler-Lagrange equation:




Outer Vacuum Solutions and Boundary Conditions iphysrevn 98 2018) 10, EurPhys.1.0.79 2019 11

* Qutside the source: p=0, p=0

and, after solving the EOM, the potential in vacuum becomes:

1| 6qy Gy M\Y*
Vout = — |1 — (]_ | v o N >
4qy r
Gy M Gy M?*  ,8G3 M?
.« o Vout 3 - Qv 5 qv 3,3
* Boundary conditions: r—oc r r r
‘/;n(R) — Vout(R) — VR — ? []_ _ (1 + GQV X)2/3:|
v — Gy M
X =
Vin(R) = Vo (R) = Vi = 1/3 R
R(1+6qy X) — —
represents the compactness.
Vi (0) =0
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Bootstrapped Newtonian stars and black holes iphys.revn 98 2018) 10, Eurphys..c70 2019 11

* Stars and black holes of uniform density:
3 My

p=po= 53 O —1)

with the (Newtonian) proper mass in general given by:

My = 4W/Rr2 p(r) dr
and the additional const;)aint given by the conservation equation
p'=-V'(p+ap)
* Set the couplings to some numerical values to simplify the equations.

* The complexity of the problem requires one to find solutions separately in two regimes:
* Small and intermediate compactness (stars)

* Large compactness (black holes)
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Small and intermediate COMPACTNECSS [Phys.Rev.D 98 (2018) 10, Eur-Phys..C 79 (2019) 1]

* An approximate solution:
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* Odd powers vanish because:

Potential Vit (solid line) vs approximate solution (dotted line)
V! (O) — 0 vs Newtonian potential (dashed line), for X = 1 (left panel),
H X = 1/10 (center panel) and X = 1/100 (right panel).

* ADM and proper mass relationship:

X
M  2(146 x)1/3

My = —° .
(1+6X)

Potential after using the boundary conditions: Pressure (solid line) vs numerical pressure (dotted line) vs New-

1/3 2 tonian pressure (dashed line), for X = 1/100 (left panel),
[(1 +64) 1} Tad [(T/R) 4] X = 1/10 (center panel) and X = 1 (right panel).

Ve =
1(1+6x)"7°

/

A



Large COMPACINESS [Phys.Rev.D 98 (2018) 10, Eur-Phys.J.C 79 (2019) 11]

Rely fully on comparison methods
* Start with simpler eq. in terms of ¥ (r; A, B)
* The potential is then written:
Vin = f(r; A, B) (r; A, B)
* Solutions for function 7(r; A, B) are not feasible
* Find constants such that

C_< f(r)<Cy

* And the potential will be bound by
Vi = Cyb(r; Ax, By)

* Approximate linear solution:

‘/iiHZVR—FVf/{(T’—R)

T ——— T —————

Left panel: E_ for C_ = 1. Right panel: E for C; = 1.6. Both
cases considering X = 10°.

Left panel: approximate inner potentials V_ (dashed line), V
(solid line) and V. (dotted line) for 0 < r < R and exact outer
potential V,;; (dotted line) for r > R. Right panel: approximate
inner potentials V_ (dashed line), V (solid line) and V., (dotted

line) for 0 < r < R/5. Both plots are for X = 10°.
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Horizon and Buchdahl limit [Phys.Rev.D 98 (2018) 10, Eur.Phys.J.C 79 (2019) 11]

In general relativity y

* Schwarzschild radius
Ry=2Gn M

* Buchdahl limit (using TOV-equation)
R > (9/8) Ry

We assume a Newtonian horizon

2 V(’l“ H) = —1 Potentials for Ry = 0 (solid line) and Ry = R (dashed line).

* Horizon inside the source

2V (R = 0) = —1 no horizon for Gn M/R < 0.46
in H — —

* Horizon at the edge of the source 0<rg<R~14GNyM for 0.46 S Gy M/R < 0.69

2Vin(Rg = R) =2 Vo (R) = —1 rg~1.4GN M for GnM/R > 0.69 .

* No Buchdahl limit exists for Bootstrapped Newtonian stars!




P()lytl‘Ol)iC STAL'S [Phys.Rev.D 102 (2020) 10)

* Polytropic eq. of state:

) — p(r) 1"
p(r) =~vp"(r) =7 po p

* same EOM as before with couplings set to 1:

* Use conservation eq. and EOS to write EOM

in terms of the density and compactness.

* Therefore, use Gaussian density profiles:

2

r
2 R2
ppoéeé bR, r <R Upper panels: density profile obtained numerically for ¥ = 1,

P = n = 5/3 (solid lines) and Gaussian approximation (dashed line)
for the smallest compactness (left panel: dimensionless quanti-

0, r> K. ties; right panel: dimensionful quantities). Lower panels: den-
sity (solid lines) and pressure (dashed lines) for the cases in the
*impose a slight discontinuity at: upper panels
pr = p(R) =0
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P()lytl‘()piC STAL'S [Phys.Rev.D 102 (2020) 10)

...skip intermediary steps. Some conclusions:

Numerical errors (resulting from solving the EoM) are
smaller for larger values of b.

The Newtonian and bootstrapped Newtonian
potentials are more different for more compact
objects. The differences becomes insignifiant for
smaller densities.

Newtonian potential generates deeper wells for most
cases (all except upper left plot).

In Newtonian physics M, /M =1, while in the
bootstrapped Newtonian model it is (almost) always
smaller than one.

Bootstrapped Newtonian stars can be much more
compact than general relativistic ones and can
withstand higher pressures.
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Bootstrapped potentials for X = 0.01 and X = 0.1 we used
n = 3/2, while for X = 0.7 we used n = 5/3. The dashed
black lines represent the Newtonian potential Vy for a Gaussian

matter distribution with the same b.

My/M as a function of b and X.
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On the masses of bootstrapped Newtonian Stars iyodphys e 5 2020) 21

* Generally the ADM mass and the proper mass are different! (In Newtonian physics they are the same)

* Go back to the simple case of uniform densities!

* We take a look at the effect of the higher order term coupling g, on the relationship between the ADM mass and
proper mass, so we set the other couplings to 1.

* We use the same approximation as before (series expansion of the potential around r=0) and get:

R [(146X)"% 1] +2X (2 - 4 R?)
Vg >~

AR?(1+6X)"°

* What is most interesting though is that only the ratio of the masses depends on the coupling:
- X
MO e 2(1+6 x)1/3 (1 + SX)

o 2/3 X
M (1 —I—GX) / {1 — qp (1(%1—25_1)1)/3 Qp}




On the masses of bootstrapped Newtonian Stars iyodphys e 5 2020) 21

In the low compactness limit the ratio goes to one.

There is a critical value for which this ratio is
equal to one:

X

BT T 603 [1+8X — (1+64)1/3]

* Below the critical value of the coupling the
ratio is greater than one.

* Above the critical value the ratio is smaller than
one.

* A quite similar treatment with similar results was
performed for the high compactness regime.
(details can be found in the reference above)

0.2 04 0.6 0.8 10 R

Ratio My/M for small and medium compactness for g, = 1
(dashed line), and g, = 0 (solid line). In these two cases My is
always different from M (dotted line).

0.1/

GNM
0.2 0.4 0.6 0.8 1.0 R

Critical value g5 of g, for which M = M, for small and medium

compactness.
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Binary mergers: mass gap and black hole area law (phys1.cnsss 2022 57455

* This is interesting in the context of the LIGO discovery of gravitational waves.

* We start from the horizon radius:

Vow(Rg) =—-1/2 — Ry =

& ADM - proper mass relation, which reads:

low compactness high compactness (black hole limit and beyond):
M M
My = ~(1—-2qy X) M My ~
0 (1—|—6qv X)l/g ( qv ) 0 q‘l//3 ‘)6'1/3

And following constraints:

* the amount of ejected mass cannot have an arbitrarily small value. This imposes a lower bound on the ejected mass during the
merger, quantity which is a function of the masses and radii of the initial stars (or black holes).

* as they increase in size black holes become less and less compact. So, when black holes merge they likely transform into
other heavier and less dense black holes.
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Binary mergers: mass gap and black hole area law (phys1.cnsss 2022 57455

* For instance in case of the coalescence of two stars we have
M = M§Y + M§Y — sM;

1/3 M 1) | M 2

(= ) Troar i)™ | (Lroarag)

oMy

and for the the merger of two stars (of low compactness) we also expect to have

OM ~ M(l) + M(g) — M(f) > oM

Separate cases:
*Stars merging into stars
*Stars merging into a black hole

*Star merging with a black hole

*Black holes merging into a black hole




Binary mergers: mass gap and black hole area law (phys1.cnsss 2022 57455

* Stars merging into stars:

* Constrains the increase of the compactness by the amount of proper mass/energy emitted
* Stars merging into a black hole:

X< 446l Mot e Mo
T oqv M1y + Mgy — oMy

* RHS must be greater than one, since the first term is greater than one.




Binary mergers: mass gap and black hole area law (phys1.cnsss 2022 57455

* Star merging with a black hole:
q‘;l/g (M(l) + M(Q) — 0 M)

Y1/3 <
M@,/ (qxl/ 3 Xé/)g) + (1= 2qv Xz)) Mz) — Mo

(f) ~

* Merger of two black holes:

* When black holes merge, it is assumed that no proper mass is emitted !

3

M1y + M)
LORS A 3 g pl/3 (1) X(2)
(1) o) T M(2) Ay
1/3
- _ - ()
s If Xy~ X=Xy o M~ (My)+ M) |1 = X < X

1/3
)




Binary mergers: mass gap and black hole area law (phys1.cnsss 2022 57455

* Area law and black hole thermodynamics

* Suppose a black hole of mass M absorbs a star of a much smaller mass oM, and no significant amount of proper
mass is radiated away. Also, assume for simplicity that X' ) ~ X'y = X > 1 and X, < 1. The black hole area

A = 47tR13 changes as:

ATA ~ 9 M(f;w— M - 2q‘1//3 y1/3 (1 — 2qy X(g)) %\4
* Entropy: NS, o M —1/3
* The temperatureis: 1T = %, = @(T)|r:RH - g% (1 o gH >
or 7 _Blav)
TGy M
: M 4 M
which leads to the entropy: j9 — dT — 5 = WBC(J(X/) = Blaqv) 4é N
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Binary mergers: mass gap and black hole area law (phys1.cnsss 2022 57455

The entropy can be used to impose more constraints on the result of a two black holes collision
* no proper matter energy is emitted during the process

* entropy is an additive quantity

* entropy must increase in such a collision

for simplification purposes assume initial black holes have roughly the same compactness

2/3 2 2/3 2 2
XN (Mo + Mea)* = 07 (M + M) )

Along with the previous constraint obtained for this case we get

B 2 2 o 3/2
M) + M, _ X

(May+ M)~ T A

<1




Binary mergers: mass gap and black hole area law (phys1.cnsss 2022 57455

* GW150014 signal observed by LIGO

y1/3 y1/3
Eow =0M~ M| 1= =Y | 4 a0 [ 1= 2P
GW = = Vi(1) Y1/3 (2) p1/3

(1)

* The final black hole mass is computed as:

_M M X\ /3 X\ L3
~ yl/3 (1) | (@) N () ()
Mgy ~ X ]\ EVERE Y — 62_29< ) +36< >

(1) (2) _

* Since initial masses are similar, we assume similar compactness values and find




Dynamical stability of bootstrapped Newtonian stars

* Newton’s second law for a thin shell (considering ¢v = ¢, = ¢, = 1):

1
(pdr)i=—[(p +p) V' +p)dr or i=-" :p Vi
* When the acceleration is null:
p=—(p+pV
: : : o\’
* Homologous adiabatic perturbations: P = po (p—)
0

dmg — constant \
0 0 op 0 or
ory ____— =3 o - = 377"_
ro — To (1 | ) £0 0 Po PO 0

0




Dynamical stability of bootstrapped Newtonian stars

* Homogeneous stars:

(after performing some simple algebra)

. X[3y-1 2
SRS (Gl )polj3 po] o

With solution of the type:

or =Cp e @t 4+ C_e "t

where

o | XIBY = 1) po+ 2po]
R2 (1+6X)"? pg

-> positive values under the \/_ — oscillatory behaviour and the star is dynamically stable;
-> negative values under the \/_ — the star is unstable.
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Dynamical stability of bootstrapped Newtonian stars

* Polytropic stars:

2
i
0o € ”r2Z ,  r<R

p:
0, r > R.

equations are much more involved, but can be brought to the simple form:

or = —f(X,r,R,v,n,b)or = —f(r)or

-> one can plot f(r) for various parameters sets.




Dynamical stability of bootstrapped Newtonian stars

* Polytropic stars:
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Plots of f(r) as a function of r for R = 1. Top panels: the adiabatic index increases from left

to right. Middle panels: the polytropic index n increases from left to right. Bottom panels: the

gaussian width b varies, increasing from left to right. Note the different ranges on the vertical axis.

Top panels: 3D plots of f(R) for b = 0.3 (left), b = 0.5 (center) and b = 0.9 (right). Middle panels:
3D plots of f(R) for n = 7/6 (left), n = 3/2 (center) and n = 11/6 (right). Bottom panels: 3D plots
of f(R) for v =7/6 (left), v = 3/2 (center) and v = 11/6.




Bootstrapped Newtonian Gravity Discussion

One of the most features of the model is the absence of a Buchdahl limit, which means that the (matter) source can
be held in equilibrium by a large enough (and finite) pressure for any (finite) compactness value;

For compactness values of about X = 0.46, a horizon appears within the source. The horizon radius becomes equal
to the radius of the source when the compactness value reaches X = 0.69;

For polytropic stars, the matter density can be well approximated by a Gaussian distribution. For flatter
distributions we recover the results obtained for uniform distributions (a consistency test);

In the high compactness regime the bootstrapped picture generates stars that are more compact than the ones
resulting from solving the TOV equation. This picture holds following comparisons to General Relativity.

Bootstrapped Newtonian stars with uniform densities are dynamically stable to holonomous adiabatic
perturbations.

Overall, flatter density distributions seem to be favoured in this model.




