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MOTIVATIONS

Ï Late-time observations of the universe, suggests that the standard Einstein’s theory is
insufficient for explaining the universe.

Ï We have to do something:
Ï Adding extra degrees of freedom to the theory; scalar-tensor,...
Ï Modifying the way the graviton interact; massive gravity,...
Ï Making the geometry richer; Weyl, Cartan, Finsler, higher dimensions,...
Ï Modifying the way the matter behaves; f (R,T,Lm ), derivative matter,...



DIFFERENT MODIFIED THEORIES OF GRAVITY



THE PROBLEM!

Ï Here, we are interested in theories with Tµν in the action; f (R,T ) theories.
Ï In these theories we have to vary the EM tensor Tµν to obtain the metric field equation.
Ï The variation can be obtained simply from the definition of the EM tensor:

Tµν = Lm gµν−2
δLm

δgµν
.

Ï Then the variation is

δTµν

δgαβ
= 1

2
Lm(gαβgµν− gµαgνβ− gµβgνα)− 1

2
Tαβgµν−2

δ2Lm

δgαβδgµν
.

Ï For a perfect fluid, there is a discussion that since Lm =−ρ or Lm = P does not depend on
the metric, then

δ2Lm

δgαβδgµν
= 0.



THE PROBLEM!

Ï Then we obtain

δTµν

δgαβ
= 1

2
Lm(gαβgµν− gµαgνβ− gµβgνα)− 1

2
Tαβgµν.

Ï This argument is suspicious at least in two ways:
1. Lm should depend on the metric since we have obtain Tµν out of it by varying with respect

to the metric.
2. The above result depends on the form of Lagrangian Lm .

This is not good since Tµν is independent itself.
Ï These are our main reasons to search for a better answer...



THERMODYNAMICS CONSIDERATIONS

Ï The first law of Thermodynamics (FLT) and the Gibbs-Duhem (GD) equations are

dU = T dS −PdV +µd N ,

U = T S −PV +µN ,

Ï Define:
the particle number density n = N /V ,
entropy per particle s = S/N ,
energy density as ρ =U /V .

Ï FLT and GD becomes

dρ = T nd s +µ′dn, ρ =µ′n −P,

where µ′ =µ+Ts is the Entalphy per particle.
Ï Differentiate GD and use FLT:

dP = ndµ′−nT d s,



THERMODYNAMICS CONSIDERATIONS

Ï In summary: ρ = ρ(n, s) and P = P (µ′, s).
Ï We have (

∂ρ

∂n

)
s
=µ′ = ρ+P

n
.

Ï This implies that P (µ′, s) and ρ(n, s) are Legendre transformation of each other:

P (µ′, s) = n

(
∂ρ

∂n

)
s
−ρ(n, s).



THERMODYNAMICS CONSIDERATIONS

Ï define:
the particle number flux density Jµ =p−g nuµ.
the Taub current Vµ =µ′uµ, which is the enthalpy flux per particle.

Ï n can be obtained as

n =
√

gµν Jµ Jν

g
.

Ï With the above definition, one obtains

J ≡
√
−Jµ Jµ =p−g n, Jµ = Juµ,

V ≡
√
−VµV µ =µ′, Vµ =V uµ.



THERMODYNAMICS CONSIDERATIONS

Ï The variation of entropy density s, the ordinary matter number flux density Jµ, and the
Taub current Vµ, wrt the metric tensor vanishes.

δs

δgαβ
= 0,

δJµ

δgαβ
= 0,

δVµ

δgαβ
= 0.

Ï The first and second one demand that the entropy production rate and the particle
production rate are constant.

Ï The last one is because we can decompose the Taub current through Pfaff’s theorem as

Vµ =φ,µ+αβ,µ+θs,µ,

where φ, α, β, θ and s are the velocity potentials (scalar fields) and are independent of
the metric tensor.



THE STORY OF DIFFERENT LAGRANGIANS

Ï For a perfect fluid in GR, we have two constraints:
- particle number conservation: ∇µ(nuµ) = 0.
- absence of entropy exchange between two neighboring flow lines: ∇µ(nsuµ) = 0.

Ï There are also other constrains:
- the flow line should be timelike: uµuµ =−1.
- boundary conditions for the fluid.



THE STORY OF DIFFERENT LAGRANGIANS

Ï These constraints can be added to the matter Lagrangian, by Lagrange multipliers

S =
∫

d 4x
p−g

[−ρ(n, s)+ Jµ(∇µϕ+ s∇µθ+βA∇µα
A)+λ(uµuµ+1)

]
,

ϕ, θ, λ and βA are Lagrange multipliers.
The α term will take care of the boundary conditions;
A being the index representing the number of BC.

Ï We can equivalently imply the constraints to the EOM.
Ï For λ and βA we will do that.
Ï We will see that −ρ(n, s) → P (µ′, s) will also work.
Ï For a general theory with matter-geometry couplings:

we know that the EM tensor is not conserved.
so, the particle number density and entropy exchange are not necessarily conserved.
there is no need to add them to the Lagrangian by Lagrange multipliers.



THE STORY OF DIFFERENT LAGRANGIANS

Ï In order to vary the action, we need to compute variations of all thermodynamics
quantities.

Ï From the definitions of Jµ and Vµ, one obtains:

δn = δ

(
Jp−g

)
= n

2

(−g
)

uµuν

(
δgµν

g
− gµν

g 2 δg

)
= n

2

(
uµuν+ gµν

)
δgµν.

δµ′ = δV =−VµVν

2V
δgµν =−1

2
µ′uµuνδgµν.



THE STORY OF DIFFERENT LAGRANGIANS

Ï From the FLT and GD equation we have

δρ =µ′δn, δP = nδµ′.

which is obtain from the fact that δs = 0.
Ï We obtain

δρ

δgµν
= 1

2
(ρ+P )(gµν+uµuν),

δP

δgµν
=−1

2
(ρ+P )uµuν.

Ï It should be noted that from the above equations one obtains

Vµ Jµ = f (s),

where f is an arbitrary function of the entropy per particle s.
Ï This is the result of the fact that we have assumed conservation of particle production rate.



VARIATIONS OF THE MATTER SECTOR

Ï Remembering the definition of EM tensor

Tµν =− 2p−g

δ(
p−g Lm)

δgµν
= Lm gµν−2

δLm

δgµν
,

one obtains the EM tensor as

Tµν = (ρ+P )uµuν+P gµν.

Ï This is true for both Lagrangians Lm =−ρ and Lm = P .
Ï These two Lagrangians are equivalent for a perfect fluid in GR.
Ï In theories with matter-geometry couplings, the EM tensor can be present in the action,

so we should know its variation (at least wrt the metric).



VARIATIONS OF THE 4-VELOCITY

Ï First note that

δgµν =−gµαgνβδgαβ.

Ï The 4-velocity is defined as uµ = d xµ/dτ, where

dτ2 =−gµνd xµd xν,

Ï We have

δ(dτ) = 1

2dτ
δ(dτ2) =−1

2
δgµνuµd xν.

Ï The variations of the 4-velocity can then be obtained as

δuµ = δ

(
d xµ

dτ

)
=−d xµ

dτ2 δ(dτ) = 1

2
uµuαuβδgαβ =−1

2
uµuαuβδgαβ.

δuµ = δ(gµνuν) =−1

2
(gµαuβ+ gµβuα+uµuαuβ)δgαβ.



VARIATION OF THE EM TENSOR

Ï We can immediately find the second variations

δ2P

δgαβδgµν
≡ δ

δgαβ

(
δP

δgµν

)
= 1

4
(ρ+P )

(
gµβuαuν+ gµαuβuν+ gνβuαuµ

+ gναuβuµ− gαβuµuν+2uµuνuαuβ

)
,

and

δ2(−ρ)

δgαβδgµν
= δ2P

δgαβδgµν
− 1

4
(ρ+P )(gαβgµν− gµαgνβ− gµβgνα),



VARIATION OF THE EM TENSOR

Ï Remember the variation of the EM tensor

δTµν

δgαβ
= 1

2
Lm(gαβgµν− gµαgνβ− gµβgνα)− 1

2
Tαβgµν−2

δ2Lm

δgαβδgµν
.

Ï Previous works assumed that the last term vanishes for perfect fluid.
Ï Previous works obtained different results for the above variation for different matter

Lagrangians (because of the first term).
Ï Our calculations give a same result for both Lagrangians:

δTµν

δgαβ
= 1

2
P (gαβgµν− gµαgνβ− gµβgνα)− 1

2
Tαβgµν−2

δ2P

δgαβδgµν
,



VARIATION OF THE EM TENSOR

Ï This is the final result:

δTµν

δgαβ
= 1

2
P (gνβgαµ+ gναgβµ)− (ρ+P )uµuνuαuβ

− 1

2

(
Tανgµβ+Tβνgµα+Tαµgνβ+Tβµgνα−Tµνgαβ+Tαβgµν

)
.

Ï Independent of the choice of matter Lagrangian: Lm =−ρ or Lm = P .



VARIATION OF THE EM TENSOR

Ï Define a new tensor

T̄µν = (ρ+P )uµuν+ 1

2
P gµν.

with T̄ =−ρ+P .
Ï The variation can be written as

δTµν

δgαβ
=−1

2

(
T̄βνgµα+ T̄ανgµβ+ T̄αµgνβ+ T̄βµgνα− T̄µνgαβ+ T̄αβgµν

)− (ρ+P )uµuνuαuβ.



WHEN TO USE EQUATION OF STATE P = P (ρ)

Ï We should imply the equation of state after the variation; on EOM.
Ï Suppose we have an EOS of the form P =αρn .
Ï The variations with respect to −ρ and P result in a perfect fluid EM tensor.
Ï However, varying wrt αρn (implying the EOS to the action) gives something wrong.



USEFUL QUANTITIES

Ï In f (R,T ) gravities, these quantities are well-known

Tαβ ≡ gµν
δTµν

δgαβ
=−3(ρ+P )uαuβ−

1

2
(ρ+3P )gαβ. (For both Lagrangians)

Ï Also, we have

δT

δgαβ
= Tαβ+Tαβ.

Ï The trace

T≡ gµνTµν =−T = (ρ−3P ).

Ï In the comoving frame, we have

T
µ
ν = 1

2
diag

(
5ρ+3P,−ρ−3P,−ρ−3P,−ρ−3P

)
.



A SIMPLE COMPARISON

Ï Remember, for the present calculation

T≡ gµνTµν = (ρ−3P ).

Ï For previous calculations

Tµν = (Lm −2P )gµν−2(ρ+P )uµuν. (Lagrangian dependent)

For Lm =−ρ, we obtain

T≈−2(ρ+3P ).

For Lm = P , we obtain

T≈ 2(ρ−P ).



A SIMPLE COMPARISON

Ï Assuming an FRW universe with

d s2 =−d t 2 +a2(t )
(
d x2 +d y2 +d z2) ,

and assuming conserved matter source with

ρm = Ωm0

a3 , ρr = Ωr 0

a4 ,
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f (R,T ) MODEL IN ACTION

Ï Consider a simple model

S =
∫

d 4x
p−g (κ2R + f (R,T )+Lm).

Ï Assume the matter source to be a prefect fluid with Lm =−ρ or Lm = p.
No difference for the new calculations, but we get different result with previous one.

Ï The equation of motion can be obtained as

κ2Gµν− 1

2
f gµν+ fR Rµν+ (gµν□−∇µ∇ν) fR = 1

2
Tµν− fT Tµν− fT Tµν

Ï The conservation equation is(
1

2
− fT

)
∇µTµν =

(
Tµν+Tµν

)∇µ fT + fT

(
∇µTµν+ 1

2
∇νT

)
.



f (R,T ) MODEL IN ACTION

Ï The only difference with previous calculations is in the tensor Tαβ.
present result:

Tαβ = P gαβ−2Tαβ−2gµν δ2P

δgαβδgµν
. (Lagrangian independent)

previous result:

Tαβ = Lm gαβ−2Tαβ. (Lagrangian dependent)

Ï For a perfect fluid, we have

gµν δ2P

δgαβδgµν
= 1

4
(ρ+P )(2uαuβ+ gαβ).

Ï Two calculations are equivalent only if P =−ρ (not an ordinary matter EOS).



COSMOLOGICAL CONSIDERATIONS

Ï For brevity, assume a very simple case f (R,T ) =α|T |n .
Ï The EOM can be written as

κ2Gµν = 1

2
Tµν+ 1

2
α|T |n gµν+nα|T |n−1(Tµν+Tµν).

Ï We will assume that the universe has dust with P = 0.
Ï We have T =−ρ.
Ï Also:

present calculation:

Tµν =−3ρuµuν− 1

2
ρgµν.

previous calculations:

Tµν =
{
−2ρuµuν−ρgµν, for Lm =−ρ,

−2ρuµuν, for Lm = P,
.



COSMOLOGICAL CONSIDERATIONS

Ï Transforming to dimensionless variables

τ= H0t , H = H0h, ρ̄ = ρ

6κ2H 2
0

, β= (6κ2H 2
0 )n−1α.

Ï The cosmological equations can then be obtained as

h2 = ρ̄m −β(3n +1)ρ̄n
m , h′ =−3

2

(
ρ̄m −4βnρ̄n

m

)
.

Ï Previous calculations leads to:
for Lm =−ρ

h2 = ρ̄m −2βρ̄n
m , h′ =−3

2

(
ρ̄m −2βnρ̄n

m

)
.

for Lm = P

h2 = ρ̄m −2β(2n +1)ρ̄n
m , h′ =−3

2

(
ρ̄m −2βnρ̄n

m

)
.



COSMOLOGICAL CONSIDERATIONS

Ï They predict different results.
Ï For n = 0.4, Ωm0 = 0.3 we obtain
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COSMOLOGICAL CONSIDERATIONS

Ï Let us solve the correct theory.
Ï Transforming to z coordinates defined as

1+ z = 1

a
.

Ï From the relation h(z = 0) = 1 one obtains

β=− 1−Ωm0

(1+3n)Ωn
m0

.



COSMOLOGICAL CONSIDERATIONS

Ï Now, use the Likelihood analysis for the observational data on the Hubble parameter in
the redshift range z ∈ (0.07,2.36).

Ï The Likelihood function

L = L0e−χ
2/2,

where L0 is the normalization constant
Ï The χ2 function

χ2 =∑
i

(
Oi −Ti

σi

)2

.

i counts the data points,
Oi are the observational value,
Ti are the theoretical values,
σi are the errors associated with the i th data obtained from observations.



COSMOLOGICAL CONSIDERATIONS

Ï The best fit values of the parameters n, Ωm0 and H0 at 1σ confidence level, can be
obtained as

Ωm0 = 0.224+0.024
−0.023,

H0 = 68.396+1.401
−1.408,

n = 0.018+0.001
−0.001.

Ï The best fit value for β is

β=−0.756+0.031
−0.030.



COSMOLOGICAL CONSIDERATIONS

The corner plot
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COSMOLOGICAL CONSIDERATIONS

The Hubble parameter with GR plot and observational data
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COSMOLOGICAL CONSIDERATIONS

The deceleration parameter together with GR plot
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COSMOLOGICAL CONSIDERATIONS

The matter abundance together with GR plot
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CONCLUSIONS

Ï We have suggested a new calculation for obtaining the variation of the EM tensor.
Ï This is not the most general calculation, but it guarantees the independence of the

variation from the matter Lagrangian.
Ï The new calculation gives a same variation for both Lagrangians.
Ï Theories with matter-geometry couplings will be affected by this calculation.
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