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> Late-time observations of the universe, suggests that the standard Einstein's theory is
insufficient for explaining the universe.

> We
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have to do something:

Adding extra degrees of freedom to the theory; scalar-tensor,...
Modifying the way the graviton interact; massive gravity,...

Making the geometry richer; Weyl, Cartan, Finsler, higher dimensions,...
Modifying the way the matter behaves; f(R,T,Ly,), derivative matter,...



higher order: f(R). f(G),...

hangi itational
%tiné’tigﬁ;f’ﬁé’ée}‘f'mw%% S/ non-standard matter interactions: £(7". T, T*")
S = [d*zy/=g(k*R-2A) + S,

non-minimal matter-geometry couplings: f (&, 7, R T.)

higher dimensions: DGP, RS,.. adding extra dof: Galileon, Generaliized Proca,...
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Here, we are interested in theories with T),, in the action; f(R, T) theories.

In these theories we have to vary the EM tensor T),, to obtain the metric field equation.

The variation can be obtained simply from the definition of the EM tensor:

Then the variation is
OTw _1,
6g0‘ﬁ 2

For a perfect fluid, there is a discussion that since L,, = —p or L,, = P does not depend on

the metric, then

Tyv =Lm&uv —

1
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» Then we obtain

6Ty 1 1
(sg_“ﬁ = ELm (8ap8uv — ua8vp — 8up8va) — 5 Tap8uv-

» This argument is suspicious at least in two ways:
1. L should depend on the metric since we have obtain Ty, out of it by varying with respect
to the metric.
2. The above result depends on the form of Lagrangian L.
This is not good since Ty is independent itself.

» These are our main reasons to search for a better answer...



> The first law of Thermodynamics (FLT) and the Gibbs-Duhem (GD) equations are
dU = TdS—PdV + udN,

U=TS-PV+uN,

» Define:
the particle number density n=N/V,
entropy per particle s=S/N,
energy density as p=U/V.

» FLT and GD becomes
dp=Tnds+y'dn, p=u'n-"P

where ¢/ = u+ Ts is the Entalphy per particle.
» Differentiate GD and use FLT:

dP=ndy —nTds,



> In summary: p=p(n,s) and P=P(,s).

» We have 3 P
o) _ _P*t"
(an)s_u n -

> This implies that P(u/,s) and p(n,s) are Legendre transformation of each other:

P
P, s)=n (ﬁ) —p(n,9).



> define:
the particle number flux density J* = ,/=gnu*.
the Taub current V, = p'uy,, which is the enthalpy flux per particle.

n=\ / —gW]”]V.
4

» With the above definition, one obtains
J=\/—JuJ*=v=-gn, JH = Jut,

V=\/-VVE=y, V,=Vu,

> 1 can be obtained as



» The variation of entropy density s, the ordinary matter number flux density /#, and the
Taub current Vj,, wrt the metric tensor vanishes.

8s PG 5V,
— =0, —— =0, =0.
6gaﬁ 6g“l3 5g“l3

» The first and second one demand that the entropy production rate and the particle
production rate are constant.

» The last one is because we can decompose the Taub current through Pfaff's theorem as

Vi=pu+af,+0s,,

where ¢, @, B, 0 and s are the velocity potentials (scalar fields) and are independent of
the metric tensor.



» For a perfect fluid in GR, we have two constraints:

- particle number conservation: Vy(nut)=0.
- absence of entropy exchange between two neighboring flow lines: V(nsut)=0.
» There are also other constrains:

- the flow line should be timelike: wuyut =-1.
- boundary conditions for the fluid.
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These constraints can be added to the matter Lagrangian, by Lagrange multipliers

S= /d‘lx,/—g [—p(n,8) + J*(Vyup + sVu0 + BaVya™) + Auyut +1)],

¢, 0, A and B, are Lagrange multipliers.

The a term will take care of the boundary conditions;
A being the index representing the number of BC.

We can equivalently imply the constraints to the EOM.
For A and 4 we will do that.

We will see that —p(n,s) — P(, s) will also work.

For a general theory with matter-geometry couplings:
we know that the EM tensor is not conserved.

so, the particle number density and entropy exchange are not necessarily conserved.
there is no need to add them to the Lagrangian by Lagrange multipliers.



> In order to vary the action, we need to compute variations of all thermodynamics
quantities.

> From the definitions of /* and V;, one obtains:

J n og g n
on =6(Tg) = E (—g) utu (% - % g) = E (uuuv+gyv)6gﬂv.

V.V 1
o =6V = ——gvv gtV = —Ep'uuuvég’“’.



> From the FLT and GD equation we have

S5p=p'én, 6P =néy.
which is obtain from the fact that 6s=0.
» We obtain
op 1 op
Sgh - (0 + P)(guy + upuy), Sgh =5+ Puyiy.

» It should be noted that from the above equations one obtains
V’ujﬂ = f(s);

where f is an arbitrary function of the entropy per particle s.
» This is the result of the fact that we have assumed conservation of particle production rate.



» Remembering the definition of EM tensor

2 6(/=8Lm) _ 8L

WIS eae e g

one obtains the EM tensor as

Ty =(p+Pluyuy+Pgyy.

» This is true for both Lagrangians L, =—p and L,, = P.
» These two Lagrangians are equivalent for a perfect fluid in GR.

» In theories with matter-geometry couplings, the EM tensor can be present in the action,
so we should know its variation (at least wrt the metric).



> First note that
88uv = ~8uagvp0g™".
» The 4-velocity is defined as u* = dx*/dt, where
dr? = -gudxtdx”,
» We have
— 1 2y _ 1 JT BRY
o(dr) = %5(61‘[ )——§6gm,u dx".

» The variations of the 4-velocity can then be obtained as

n " 1 1
%) = —d—xz6(dr) = Eu“uauﬁ(ﬁgaﬂ = —Eu“uauﬁo‘g“ﬂ.

b
ou 6( 0
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Suy=06(guwu') = =5 (8ualtp + uplia + Uylla up)og°P.



» We can immediately find the second variations

52p ) ( &P

1
5gBogh = 5geh 6gfw) = Z(P+P)(gpﬁuauv+g;muﬁuv+gvﬁuaup

+ Zya llp Uy — SapUully + 21y Uy Ug Up),

and

6%(-p) _ 6°P 1
5g7ogn  ogebogny 4P+ 8ap8uy~ Sualup =~ Bup v,



» Remember the variation of the EM tensor

82Ly,
6gaﬁ5g;w '

67, 1 1
5ga’3 = ELm (8ap8uv — 8ua8vp — 8up&va) — > Tap8uv—2

> Previous works assumed that the last term vanishes for perfect fluid.

> Previous works obtained different results for the above variation for different matter
Lagrangians (because of the first term).

» Our calculations give a same result for both Lagrangians:

6%p
22—,
5gaﬁ5g;w

6Ty 1 1
5P = Ep(gaﬁgyv — 8ua8vp— 8up8va) — 2 Tap8uv —



» This is the final result:
67, 1
6g“ﬁ T2

P(gvp8an+ 8vagpw) — (0 + Pluyuyugug

1
—5 Tav8up+ Tpv8ua+ Tau8vp+ Tpu8va — Tuv8ap + Taﬁg;w)-

> Independent of the choice of matter Lagrangian: L,, =—p or L,, = P.



> Define a new tensor
_ 1
Ty =(p+ Plugyuy + EPg,w.

with T=—-p+P.
» The variation can be written as

0T, _ 1
6g“ﬁ T2

(Tpv8ua+ Tavgup+ Tap&vp+ Tpugva — Tyv8ap + Tap8uv) — (0 + Py liytiqug.



> We should imply the equation of state after the variation; on EOM.
> Suppose we have an EOS of the form P =ap”.
» The variations with respect to —p and P result in a perfect fluid EM tensor.

> However, varying wrt ap™ (implying the EOS to the action) gives something wrong.



> In f(R,T) gravities, these quantities are well-known

oT, 1 .
Tap=g"" 6gZ; =-3(p+P)uqup— E(p +3P)gap- (For both Lagrangians)

> Also, we have

oT

(sg_aﬁ = Taﬁ + -ﬂ—aﬁ.

» The trace
T= g’“’TW =-T=(p—-3P).

» In the comoving frame, we have

1
T = Ediag(5p+3P,—p—3P, -p-3P—-p-3P).



» Remember, for the present calculation

T=g"Tuw=(p—-3P).
» For previous calculations
Tyy = (L —2P)guy — 2(p + P)uylty. (Lagrangian dependent)
For L, = —p, we obtain
T ~-2(p+3P).
For L,, = P, we obtain

T=~2(p-P).



» Assuming an FRW universe with
ds® =—dt* + a*(t) (dx* + dy* + dz?),

and assuming conserved matter source with




> Consider a simple model

S=fd4x\/_—g(1<2R+f(R, T)+ Lp).

> Assume the matter source to be a prefect fluid with L, =—p or L, = p.
No difference for the new calculations, but we get different result with previous one.

> The equation of motion can be obtained as

1 1
KZG;W - Efg;tv + frRuy + (8 =V Vi) fr = 3 Ty = frTw = frTu

» The conservation equation is

1 1
(5 —fT) VE Ty = (Tuy + Tow) VE fr + fr (V”TW + EVVT).



> The only difference with previous calculations is in the tensor Tggp.
present result:

2
Tap=Pgap—2Tap— Zg”VW. (Lagrangian independent)
previous result:
Tap=Lm8ap—2Tap- (Lagrangian dependent)

> For a perfect fluid, we have
6%p 1
w__ %2 _Z

8 Ggapogn 4P TP Claltpt 8ap).

> Two calculations are equivalent only if P =—p (not an ordinary matter EOS).



> For brevity, assume a very simple case f(R,T) = a|T|".
» The EOM can be written as

1 1 _
K2 Gyy = ET#V + EaITI”gm, +nal TI" N (Tyy + T ).

» We will assume that the universe has dust with P =0.
> We have T =—p.

> Also:
present calculation:

1
Ty =-3puyuy— Epgyv.
previous calculations:

T _ —Zpuuuv - Pg;w, for Lm =-p0
w =2puyuy, for L,,=P,



» Transforming to dimensionless variables

P

T=Hyt, H=Hyh, p=——,
0 0 P 6K2Hg

= (61<2H2)”_1a.
0
» The cosmological equations can then be obtained as

R 3, R
W= pm= PG+ Doy, ==Z(pm—4pnpr).

» Previous calculations leads to:
for L, =—p

- 3, _
W = pm— 2B, h’=—§(pm—2ﬁnpﬁ1)-
for L,,=P

3 _
W =pm=2p@n+Dpy, B ==Z(pm=2Bnpy,).



> They predict different results.
» For n=0.4, Q,,0 =0.3 we obtain

10

correct o1




» Let us solve the correct theory.

» Transforming to z coordinates defined as
1
l+z=—.
a

» From the relation i(z=0) =1 one obtains

1-Qmo

P=-tsmar
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Now, use the Likelihood analysis for the observational data on the Hubble parameter in
the redshift range z € (0.07,2.36).

The Likelihood function

2
— 2
L=Lge X2

where Lg is the normalization constant
The y” function

i counts the data points,
O; are the observational value,
T; are the theoretical values,

o; are the errors associated with the ith data obtained from observations.



» The best fit values of the parameters n, Q;;0 and Hy at 10 confidence level, can be
obtained as

0.024
Qo =0.22475053,
1.401
Hy =68.39611 308,
— 0.001
n=0.018%7q0; -

> The best fit value for § is

0.031
B ==0.7565030-



The corner plot
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The Hubble parameter with GR plot and observational data
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The deceleration parameter together with GR plot




The matter abundance together with GR plot




> We have suggested a new calculation for obtaining the variation of the EM tensor.

» This is not the most general calculation, but it guarantees the independence of the
variation from the matter Lagrangian.

» The new calculation gives a same variation for both Lagrangians.
» Theories with matter-geometry couplings will be affected by this calculation.
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Thanks for your attention!
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