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INTRODUCTION

A Cosmology=ss) Study of the origin, evolution, structure
formation, dynamicsand ultimate fate of the Universe.

A High precision observations and new scientific
discoveries at theoretical ground make cosmology an
exciting field of research

A PhysicalUniverseis well describedby =) Gravity

A Gravity mss) Play a major role in the creation and
structure formation and also regulatesthe dynamics of
the Universe.

A Bestdescription of Gravity s=ss) General Relativity




A 100+ yearsof journey of GR. |EREEESESRassE o
A Encountered with many PN 7 ((
hurdles, axed many times K- N
with observational [ \ Sovitational waves
discoveries(1929by Hu b b | oreted? s
observation, 1965 by CMB ' |
observation, 1998 by SN la
observation ..). But, stood geles
high with the successes

Y

Black holes = wormBoles

Successes of general relativity throug
experiment and observation.




A SM mm=) suffers from initial singularity problem, age
problem, cosmological constant problem, flathess
problem, hierarchy problem etc. (Fundamental
problems associatedo SM)

A Moreover, late-time cosmic acceleration can not be
explainedwithin the framework of GR.

A Modifications of general relativity (modified gravity
models)required to addressfew of thoseproblems; >
Massivegravity, Gauss Bonnet gravity, f(R), f(T), f(R,T)
gravities are namesof a few amongthe various
alternative theoriesproposedin the pastfew years




VARIOUS THEORIES OF GRAVITY

AAffine gauge theory
AAlternatives to generalrelativity
AAQUAL

ABi-scalar tensor vector gravity
ABimetric gravity

ABransi Dicke theory
AChaslestheorem (gravitation)
AChronology protection conjecture
AComposite gravity
AConformal gravity
ACosmologicalconstant

ADark fluid

ADemocratic principle

ADGP model

AEinstein aethertheory

AEinsteini Cartan theory

AEmergent gravity

AEntropic gravity

AAn Exceptionally Simple Theory of
Everything

AExtended theories ofgravity

AF(R) gravity

AFer mat 6s and eneragy
In field theory

AGauge gravitation theory

AGauge theory gravity

AGauge vector tensor gravity

AGauss$ Bonnet gravity

AGauss'slaw for gravity

AGeneral relativity



AGeometrodynamics
AGraviscalar

AGravitational field

AHayward metric
AHigher-dimensional Einstein gravity
AHigher-dimensional supergravity
AHistory of gravitational theory
AH o S 4 hifshitz gravity

AHoylei Narlikar theory of gravity
Alnduced gravity

AKaluzai Klein theory

AlLarge extra dimension

ALe Sage's theory of gravitation
ALoop quantum gravity
ALovelock theory of gravity
AMach's principle
AMassivegravity

AMechanical explanations of gravitation
AMetric -affine gravitation theory
AModified Newtonian dynamics
ANewtoni Cartan theory

ANewton'slaw of universal gravitation
ANonsymmetric gravitational theory
ANordstrom's theory of gravitation
ANuts and bolts (general relativity)
AParameterized postNewtonian formalism
APlebanskiaction

APolarizable vacuum

APressuron

AQuantized inertia

AQuantum gravity

ARainbow gravity theory

AScalar theories of gravitation
AScalari tensor theory

AScalaii tensofi vector gravity



ASemiclassicabravity
ASocial gravity

AStochastic electrodynamics
ASupergravity
ATeleparallelism

ATensolri vectori scalar gravity
ATheory of everything
ATwisted geometries
ATwistor theory

AUnified field theory
AWhitehead's theory of gravitation
AWorld crystal

AYilmaz theory of gravitation

Somemore theoriesof the Universe also proposed
other than gravity in the pastfew decades
Examples

A SteadyStatetheory
AQuasisteadystatetheory

A String theory

ABiocentrism

AMultiverse theory

AThe Bouncing model

A Cyclic Universetheory

AThe Black hole Universetheory

ABiocosmology(Multiverse, Life and
Consciousness)

f(R), f(R,T), f(T), f(T.G), f(G), f(Q), f(Q,T), f( R4, ) theories of gravity

We start our discussionwith the Einstein Field Equationsin GR.



EINSTEIN FIELD EQUATIONS

Einstein Field Equations are given by

THh
where, 7 is the Einstein Tensor, 7|y 1 is the stressenergy tensor, 1 is the

Ne wt gnavitaional constant

Z Tilnn

THh =| Hh _I H ﬁl
Where 4 ;;,and 4 are the Ricci tensorand Ricci scalar. |  yis the metric tensor

LHS of EFEs describesgeometry of
the Universe and RHS the matter In
the Universe

LHS of EFE mess) MATHEMATICS
RHS of EFE===) PHYSICS

Ry — (112)Rgy = (87G)T,y

Volume of Space-Time
Curvature

Forces experienced as an
object moves within the
Space-Time Curvature

The force field's function
on the Space-Time
manifold




Some features  of EFEs

A Einstein Field Equation is a tensor equation relating a
set of symmetric tensors Each tensor has 10
iIndependentcomponents So, there are 10 numbers of
2"d order nonlinear partial differential equationsin 4
Independent variables. Bianchi identities reduce the
number of independentequationsfrom 10to 6.

ATrace w |70 17"%an -1700d 7
4 -=4 —<8 For = h 18 So, Einstein
tensoris alsocalled the tracereversedRiccl tensor




A EFEs are fundamental
equations  of GR
providing the equations
of motion for the
spacetimemetric in the
presenceof matter.

A Despite the simple
appearance
(in  Z Tilny of the
equations they are In
fact quite complicated

Einstein's Field Equations
(The General Theory of Relativity)

fb/page/Cosmological Astrophysics

G+ /gy = 2 GT
— \ G62™)

tells matter-energy tells matter-energy
how to curve how to move through
space-time curved space-time

The equations completely changed
how we understood the nature and
evolution of the Universe.

Conclusion:-The most attractive
parts of the Universe are Curvy.




A The EFEs reduce to Ne wt oawdo$ gravity by using
both weak-field approximation and the slow-motion
approximation. In fact, the constantG appearing in EFEs
IS determined by making thesetwo approximations.

A If the energy momentum tensor is that of an
electromagnetic field In free space,then the EFEs are
called the Einstein-Maxwell equations (with cosmological
constant).

A If the energymomentum tensor is zero, then the FEs are
refers to asthe vacuum field equations 4  y,

A Next we discussthe solution of EFEs.



EXACT SOLUTION

A The solution of the EFEs are metrics of spacetime The
solutions are hencecalled metrics. Thesemetrics describethe
structure of the spacetime including the inertial motion of
objectsin the spacetime

A As the FEs are non-linear, they cannot always be completely
solved(without making approximations).

A However, approximations are usually made in these cases
(commonly referred aspost-Newtonian approximations.).

A Even so, there are numerous caseswhere the field
eqguations have been solved completely and those are
called exactsolutions




A The study of exact solutions of EFEs is one of the
activities of cosmology

A It leadsto the prediction of black holesand to different
modelsof evolution of the Universe

A Exact solutions of Einstein field equationsis important
In studying the nature & behavior of the physical
Universe.

A The first exact solution of the EFEs is the
Schwarzschild exterior solution, wherein the prefect
flud equation of state was considered as a
supplementarycondition.



A Despite of the high non linearity of the EFEs, various
exact solutions are obtained for static and spherically
symmetric metrics.

A Einstein's static solution, de-Sitter solution, Tolman's
solutions, Adler's solutions, Buchdahl's solution, Vaidya
and Tikekar solution, Du r g a psaldtians, Knutsen's
solutions and many more well-known solutions of EFES
are obtained which are summarized in the literature (D.
Kramer et al.,, 1 E x asalutionsof E1 n s t eeqg unadtsi
Cambridge, (1980.).

A All those phenomenologicalcosmological models explain
the Universetheoretically very well.



Applications of exact solutions in Astrophysics

v Slowly rotating stars and planets: The Schwarzschild solution
+ Static black holes: The Schwarzschild solution

+ OStar interiors: e.g. Tolman, Buchdahl, Heintzmann solutions

+ Neutron stars: Tolman VI and Durgapal solutions
+ Rotating black holes: The Kerr-(Newman) solution
+ Gravitational waves: gravitational plane wave exact solution

+ Standard model of cosmology: The Friedmann-Lemaitre-
Robertson-Walker solution

+ Inhomogeneous Cosmological models: e.g. Lemaitre-Tolman-Bondi
solutions, Szekeres solutions, Oleson solutions




SOLUTIONS OF EFESARE USUALLY OBTAINED

A By assuming symmetries on the metric and other simplifying
restrictions.

A Two basic assumptions are that galaxies are homogeneously
distributed on galaxieslarger than 50 Mpc and that the Universe
IS Isotropic around us on angular scaleslarger than about 10
degrees

A With this simplified assumptionsthat our placeis the Universeis
not specialat all, then isotropy around all its points is inferred.

A Finally, there is a theorem in geometry, which tells us that if
every observer seesthe same picture of the Universe when
looking at different directions, then the Universe Is
homogeneous



A Theseassumptionsboil down into the (Friedmann-) Robertson
Walker metric. Our Universe can be viewed as an expanding,
Isotropic and homogeneousspacetime and the line element

reads
m
>

+ (3

m, N

> v. PR )_

spatial sectionsand 5= <« Is the scalefactor. We have chosenthe
units with 5= . The coordinates (»PH ) are commoving
coordinates

A Up to now, we have discussedabout the geometry (LHS of
EFES) part. Following we, discussthe matter (RHS of EFES).



A Given a source energy-momentum tensor, an exact
solution to the Einstein equations, where the
spacetimemetric functions are expressedin terms of
elementaryor well-known specialfunctions.

A We have seenthat simplifications in geometry are
required to model the Universe In the same spirit
reduction of sophistication in the description of
matter/energyis alsorequired.

A Simplicity on the one hand, and consistency with
observations In the other, suggest adopting the

perfect fluid picture.



A So,for a perfect fluid sourcei.e. if we assumethe matter
content in the Universe is filled with perfect fluid, then
the energymomentumtensortakesthe form:

C o dMn G =O0n =Ry
where zh= 0  representing the energy density,

pressure and velocity of the fluid .
A Then the Einstein Field Equations in the FLRW
background reads
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whereq Isthe Hubbléﬁparameter.
A These are two independent equations known as
Friedmann equation and Raychaudhuri equation.

A From Einstein equations one can derive other two
Important equations,the energy conservationeguation
and acceleration equation, which tells us about the
evolution of the spatial separation betweengeodesics



And

iU
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A Thesepreliminaries suggestthe interplay betweenthe
matter/energy content of the Universe and its
geometryhavea crucial influencein its final fate.

A Out of the four equations above, only two are
iIndependentwith three variables=-, Z, wm=




A In order to find a consistentsolution, we needto close
the systemand we needone more equation.

A Since, we have consideredthe perfect fluid source, a
relation betweeni t @ressure and density Is natural

and the simplestform of the equation of statewould be
alinear onel.e.

mm 7
where, different values of the :: describe different
matter contentin the Universe
A Now, we havethree equationswith three variables and
we can havea consistentsolution to the EFEs.



A For flat geometry( ), EFEs can be solvedfor;

ElectromagneticRadiation (Photon). X
solutionwill be: s 4° = Z 9
Incoherent matter (Cosmic Dust):
solution will be: 49 < Z 9 =
A In both the cases, we get the deceleration
parameter A Cl ' H'HI BHI M
- "H'l 17 Implying the decelerated

expansionof the Universe.



A Similarly, for a constant energy density ( z
Fo = V 4=z« ), we have from the continuity
equation, m=s 7z Or and Hubble parameter
comesout to be constant The scalefactor follows ==°
m and A 8 t thedle-Sitter Universe

A Moreover, for a static Universe (= qr= = ¥ @nd <
we have 7 h = . From equations (2) and (5),
we havez — f

47

A However, the linear equation of statems 2z is not the
only choice EoS may be quadratic or other forms too.

In general m lz)8



A If we observethe technique of finding a solution of the
EFES,we cansee
A There are 3 variables = «, Z <, == < that may take

any functional form. For example

4 Fo = v# (< 4- A= < iqoranycom:)icatecfunction.
Z(4 Fo = V4E(Y <9 (< iﬂoranycomoicatecfunction.

mgd Fo o= v##ﬁ-§< M=t 4  <«hor any complicatedfunction.

Or arelation betweenthe variablese.q. ma [z)
A So, mathematically, we have choices to consider a

functional form of the variables (time <©or redshift ») or
a relation betweenthem. They may contain either one
or more arbitrary parameters » hiahe h etc.




Various functional forms of [{z) considered

Pressure p(p), p(z)
plp) = wp (Perfect Hluid Eos)

plp) =wp— f(H) (Viscous Huid EoS)

p{pi = wp + kp't= (Polytropic gas EoS)

plp) = %% — 3p* (Vanderwaal gas EoS)

plp) = —(w + 1]% +wp + (w + 1)pa (EoS in quadratic form)

p(p) = —2 (Chaplygin gas EoS)

plp) = —P% (Generalized Chaplygin gas EoS)

plp) = Ap — Pﬁﬁ (Modified Chaplygin gas FoS)

plp) = Ap — %EEE ( Variable modified Chaplygin gas EoS)

plp) = Ala)p — J—l (New variable modified Chaplygin gas EoS)
)

= —p—p° {DE EoS)



A With the linear form of EoS different values
of the :: describe different matter content in the
Universeother than radiation/ dust matter.

A For example For @ , It represents vacuum
energy, for :: . , representsguintessence
and :: , representsphantom.

A In the next section,we discussthesein relation to the
recentdiscoveryof Late-time cosmicaccelerationand

our motivation of (of this talk) COSMOLOGICAL
PARAMETRIZATION to solveEFEs.



DARK ENERGY

A Before 199® st ,wasa common understanding that
the expansionof the Universe Is slowing down due
to attractive gravity and theorists were working on
modelsof the Universewith deceleratingexpansion

A Moreover, solutions of standard model with normal
matter sourcesare found with a positive value of
decelerationparameter.

A But, the observations on Type la supernovae

suggestedacceleratingexpansionof the Universe.
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A This is the birth of a new phaseof cosmological
studies and cosmologistsstarted to think about
late-time _cosmic_acceleration with _an_earlier
phaseof deceleration

A This discovery of cosmic acceleration again
shookthe foundation of generalrelativity .

A Later on the idea of cosmic acceleration
recelvedmore and more evidenceby many other
observationsaswell asat theoretical ground.



A DE was supported by some independent
observations e.qg. the BOOMERanG, Maxima,
CMBR, BAO, 2dF Galaxy Redshift Survey, DES
etc.

A Much more precise measurementsfrom WMAP
have continued to support the SM and give more
accurate measurements of some cosmological
parameters

A The idea of late-time cosmic acceleration is now
playing a major role in precision cosmology



A Now, the question arises, how to get accelerating

A
A

A

expandingsolutions?
Within the background of GR, it Is difficult to get
accelerationwith normal matter source(z N ).

Two simplestwaysare =) Modifying the left hand
side of EFEs (Geometric modification) and inserting
additional term In the right hand side of EFEs with
high negativepressure(Physicalmodification).

These two modifications produced a plethora of
cosmological models in the past twenty five years
leading to acceleratingexpandingsolutions



A However, theseare not the only possibilities and is an
open question till. One can deduce accelerating
solutions without any modification or incorporating
extra degreesof freedomtoo.

A The simplest and most significant way to get
acceleratingsolutionsis by incorporating the E1 n s t
cosmological constant in the RHS of EFEs but as a
negativematter source

A Einstein introduced cosmological constant (CC) into
fleld equations as he was convinced with static
Universe The modifications of EFEs canbe seenas




Guv - 81-[6 Tuv Einstein’s original equation

Law of an All matter and energy in
expanding universe the universe

Guv + Aguv - BHGTUV PAyausaye

Law of an Cosmological All matter and energy in
expanding universe constant the universe
po— =
el
GUV = 816 ( | uwv ~ PDEGuv
Law of an All matter and energy in

expanding universe the universe

a



A  The modified EFEswith CC canbe written as

iU
L LD
N
—]
N
|
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N\
\—/

|
|
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A For a dust (== ) dominated Universe in presenceof
CC, EiI n st &tation Gneverse corresponds to,

h= . must be positive since iImplying for

a static universe

(closed)with aradius = 7



A Although, = r4 model is consistent with
observations, it suffers from the long standing
Cosmological Constant problem due to the non-
dynamical equation of state of

A The incorporation of DE resolvedthe problem of late-
time cosmic acceleration largely but a new problem
arose, nwhat Is the suitable candidate of dark
energy® ,due to the non evolving nature of the
cosmological constant, which Is plagued with fine
tuning problem.

A So,modelswith dynamical EoSare explored.




Possible Models of the Expanding Universe

A The da‘ta from the globu ar i - Deceler 7 CoastingUniverse Accelerating Universe
A I e Ny
cluster alsorevealsthat the A .
ageof certain objectsin the
Universe could be larger
than the present estimated :
age of the Universe in | e

Id h d l universe because it takes more time to

ach its present dpdf

standard model  with B
normal matter.

A As of now, the only known
resolution of this puzzle is
provided by invoking the
conceptof late-time cosmic
acceleration

SCALE OF THE UNIVERSE




A Although, the nature of DE is unknown but it is generally
consideredto be homogeneousand permeatesall over space
A The total energybudgetin the Universeis estimatedas

B Dark Energy

l Dark Matter

B Free Hydrogen & Helium
O Stars

O Neutrinos

@ Heavy Elements




Dark Energy Modelling Beyond CDM

A There were several attempts to solve the long
standing cosmological constant problem even
before the discovery of cosmic acceleration by
varying

A In this direction, authors have considered some
variation laws for the cosmologicalconstantin the
past forty years, commonly known asn -varying
cosmologies or nNDecaying vacuum cosmologies.
Following is list of suchdecaylaws of



X o= ° (T), T is Temperature
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A
A
A

The problem can also be alleviated with a dynamically
evolving scalarfield.

Dynamically decaying , vacuum energy have also
beenusedto explain late-time cosmicacceleration

A variety of scalar field modelshave beenproposedto
describe the late-time cosmic acceleration including
guintessence, phantoms, K-essence, Tachyon scalar
flelds and somemore.

Some other DE models with scalar field are
Chameleons, Galileons, Holographic scalar field and
non-minimally coupledscalarfield.



A A quite different approach for the description of
cosmic acceleration is to consider the Chaplygin gas
EoS (and its modifications), Polytropic gas EoS
Vanderw a | flui@ and bulk viscousfluid .

A However, the search for suitable candidate of dark
energy s still an openquestion

A Here, we shall discussthe theoretical approachto some
dark energy modelsin classicalgeneral relativity and
also discussthe reconstructions of these models with

cosmologicalparametrization.



Scalar Field Model of dark Energy

There are observationswhich constrain the value of EoS

The DE may be represented as a standard scalar field
minimally coupledto gravity with Lagrangian,

il —zq =/ )
The stressenergy-tensor take the form of a perfect fluid
representedby

%Hh z- wm TRl HA



wheremms — 1 ,Z22 — T

The equation of stateis then - = —= which gives
rise to different candidates of scalar fieldrdark energy
depending upon the potential -+~ of the field = . For
slow roll scalar field (potential dominated) i.e. 7v(C ) |

] and act like a cosmologicalconstant

Wlth this set up the EFEs with scalar field in FLRW
background yieldsthe following field equations



Friedmann equation

2l T %2 Z )

And the evolution of the scalar field Is governed by the
waveequation

. . W
U E
Where, 4 _. ( Z 9 7 .With this basic setup, we can

explore the physical nature and geometrical behaviour of
the Universewith certain constraints.



In the current cosmology, it iIs a common trend for the
theoreticians to construct models of the Universe with this
basicsetup and with certain physical assumptionsthat solve
the systemexplicitly and cosmichistory can be studied from
the beginning to present phase of the Universe and
eventually the fate. On the contrary, the dynamical system
approach can also be used to explore without finding the
exactsolutions

| am Interested In finding the exact solutions to field
eguationsin a model independentway or the cosmological
parametrization and study the various phasesof Universeto
discussvarious phenomenawith observation




COSMOLOGICAL PARAMETERS

Einstein Field Equations is generally characterized by the
following basicparameters

Geometrical Parameters| Definition | Physical Parameters| Definition

Scale factor =+ Energy density Z

Hubble parameter 3 Pressure =

Deceleration parameter A EoSparameter

Physical Parameters with DE Definition Some other parameters are

) Density parameter (¢ ), Shear

CosmologicalConstant ( 4 ) for anisotropic

Scalar field - background, scalar expansion
. . (P), jerk parameter () and so

Scalar field potential on.




COSMOLOGICAL PARAMETRIZATION

A We have already mentioned earlier, in FLRW cosmology,
EFE contains three variables =< 4hz ( 4h == < with two
Independentequationsthat can be solvedby supplementing
the EoS and system becomesmore complicated with the

addition of an extra degreeof freedom (DE).

A In literature, there are several physical arguments to
consider a functional form (parametrization) of any
cosmological parameter (= E-
some free parameters generally termed as model
parameters that can be constrained through any

observationaldatasets




A If we examineclosely we might remark that the primary
type of parametrization of geometrical parameters Is
studied to produce exact solutions that address the
expanding dynamics of the universe and give the time
evolution of the physical parameters z, == or <. The
secondtype of parametrization of physical parametersis
commonly used to explain physical features of the
universe

A The modekindependentway approach hasthe potential of
rebuilding the cosmic history of the universe as well as
Interpreting some of the u n 1 v e phenentesawithout
affecting the background theory.



A This modekindependent study of cosmologicalmodels
termed as COSMOLOGICAL PARAMETRIZATION .

A Furthermore, this strategy gives the easiestway to
theoretically overcome several problems of standard
model, including the initial singularity problem,
cosmological constant problem, etc. and also the
Hubble tension

A In the following, | have summarizedthesecosmological
parametrizations usedin the past 20-40 yearsin some
detalil.




Scale factor a(t)

a(t) = constant (Static model)

a(t) = ct (Milne model or Linear expansion)

a(t) ~ exp(Hgt) (ACDM model or Exponential expansion)

a(t) ~ exp [—ﬂrt In (i) + ,St] (Inflationary model)

g
a(t) ~ exp [—at — Ft"] (Inflationary model)
a(t) ~ [explat) — Fexp(—at)]” (Inflationary model)
a(t) ~ exp {%} [1 4+ cos (%1)] (quasi steady state cosmology, Cyclic Universe)

a(t) ~ t* (Power law Cosmology)
a(t) ~ t" exp(at) (Hybrid expansion)
a(t) ~ exp [n(logt}™] (Logamediate expansion)
a(t) ~ cosh at {Hyperbolic expansion)
i
a(t) ~ (sinh at)™ (Hyperbolic expansion)
a(t) ~ (:,‘_:J (Singular model)
a(t) ~ t"exp [x(t, — t)] (Singular model)

a(t) ~ exp (ﬂr%z-) { Bouncing Model)
a(t) ~ exp (nf_l (t — :_':3}‘:"'"1) (Bouncing Model)
a(t) ~ (Spt? + '1:]-?:'r (Bouncing Model)

a(t) ~ (*-—*) (Bouncing Model)

L

a(t) ~ sinZ (aﬁ) (Bouncing Model)



Hubble parameter H (t) or H(a) Deceleration parameter g(t) or q(a), q()
H(a) = Da™™

1—a? q{t} =m — 1
H(a) = e =a . g(t) = —at+m —1
H{ﬂ}_: ﬂml +a™") q(t) = cvcos(Ft) — 1
H(t) = at+j (t) = _ ot
H(t) = mrsaeq T o
H(t) =m+ 3 q(t) = ——
H() = iny q(t) =~ + 5 —1
H(t) = %{:+Tn]3 — 3 (t + Tp) g(t) = (8n2 — 1] — 120t + 342
H(t) = aet o™
HH = a+ Blts —t)" qg(a) = -1 - 175
H(t) = a— fge™ q(z) =qo +q12
H(t) = fi(t) + fa(t)(ts — 1)" g(z) =qo+qiz(1+2)7!
H(t) = i q(2) = go +q12(1 + 2)(1 + 2°) 7"
H(t) = natanh(m — nt) + 3 q(z) = % +g.(1+ E]—E
H(t) = atanh (%) ) q(z) =qo+q1[1 +In(1 + 2)]1
H(z) = [a+(1-a)(1+2)"])7 q(2) = 5+ (@12 + g2) (1 + 2) 7



_ 3 (14z)92
q(z) = —1+3 (q1+{1+z]|?2)
gqred2(1+z) _g—gqz(1+=)

q[:&} = —% [31‘.]‘1 +1-— 3{@'1 + l} (qlfq3[1+:]+f—qg{l+r})i|

g2 ———  —q2
L J1 € Vidtz g W 14z
Q(E} - _E + 3 (q R 1‘,1_—‘,__'_E_—I'1’2J1—)
q(2) = qf + ——L—
(52
((1+z) =—1
() = g0 — a1 (=1
[ In(a+ |
q(z) = g0 + q % —

q(2) =qo — (g0 — q1)(1 + z) exp |27 — (2 + 2c)°]

Jerk parameter j(z)
j{E] = —1 —|'j]_—|:—:|— where f{;_::] — =z = {1+3 B lﬂg{ ] and E{E] — HH[jg
Hi

E=(z) ' 142!
j{ ]: _1+jlh2[{3}]-.- where f(E} — 15 ]-‘|_34_. (1 +E} . '[1 + :]_1 and h{z] =

z)
0




Pressure p(p), p(z)
plp) = wp (Perfect finid EoS)

:a-+,ﬂ( = ) (DE EoS)
= o+ Sln(l + z) (DE EoS)

plp) =wp — f(H) (Viscous Hluid EoS)
p(p) = wp + kp't= (Polytropic gas EoS)
plp) = g—t_”f'; — 3p® (Vanderwaal gas EoS)
plp) = —(w + 1]45 +wp+ (w+ 1)pa (EoS in quadratic form)
p(p) = —% (Chaplygin gas EoS)
plp) = _PE'* (Generalized Chaplygin gas EoS)
plp) = Ap — PE'* (Modified Chaplygin gas EoS)
plp) = Ap — EP':EE (Variable modified Chaplygin gas EoS)
plp) = Ala)p — —"r-—:'— (New variable modified Chaplygin gas EoS)
plp) = —p—p° {DE EoS)
plz) = a+ ,3:5 [DE EoS)
plz) = 515 (DE EoS)
(2)
(2)



Equation of state parameter wi(z)

w(z) = wp + uwy 2z (Linear parametrization)
wiz) = wo + wll:l—_fzjg (JBP parametrization)

w(z) = wo + wlw (Generalized JBFP parametrization)

wiz) = wg + wy—— (CPL parametrization)

w(z) = wo + un (m) (Generalized CPL parametrization)
w(z) = wo + un 1.;“13?5 (Square-root parametrization)

w(z) = wp + wy sin(z) (Sine parametrization)

w(z) = wy + wy In(1 + z) (Logarithmic parametrization)
wz) = wy 4+ wy In (1 + H_z) (Logarithmic parametrization)
wiz) = wo + un z—l"r%ﬁ—]— (BA parametrization)

w(z) = wo + un (Eﬁ_%l — 1112) (MZ parametrization)

w(z) = wg + un Einl{:__;z] — =in 1) (MZ parametrization)

w(z) = wg + wy -z (FSLL parametrization)

w(z) = wo + wll—_‘i,g (F'SLL parametrization)

w(z) = —1+ '14":?'3 Fr+2ac::_1l_—|z—f}||:-l|-_.;ﬂ+ 7= (ASSS parametrization)
1+ =\

w(z) = -w.;|+-w1|: ';, i (Hannestad Mortsell parametrization)

w(z) = —1 4+ a(l + 2) + (1 + 2)? (Polynomial parametrization)
w(z) =—1+all+ flz)] +5[1+ fi(2)]? (Generalized Polynomial parametrization)



w(z) = wo + 2 (2),
_ _ —2(14z)d; —3d,
w(z) = E[JL—HM{I+3]9[:£L;|

wela) = wpexpla—1)

wela) =wya(l — loga)

we(a) = wpaexp(l —a)

wy(a) = wya(l + sin(1 — a))
we(a) = wpa(l + arcsm(1l — a))
wdel:g} = Wy + uh g

Wie(2) = wo + wrg(l 4+ 2)°
wdel:g} - —

[1+bIn(14z2)]"

w,(z) = wo + b {1 — cos [In(1 + 2)]}
wq(2) = wy + bsin [In(1 + 2)]

welz) =wo +b [M — sin 1]

14=

we(z) = wu—|—b(1+z)n:{:-5{1 + z)
w(z) = wy + w, |22 lnE]

14z
[In(a4+14z) ln{a+l}]

w(z) = wy + wy e

&
¢
5] where d. = | 74—

Energy density p

A
[t ()
(%) =5
aH|(z)

aH(z) + BH2(z f
= % o+ BH?(2)

a + EEH z}]
aHE[g} + EﬁH{g;.]
o+ BH2(2) + ETH{EJI

s0(1+ 2)% b=



Scalar field Potentials V' (g)
Vig) = Vyod™ (Power law)

V(g) = Voexp [—ﬁ%] (exponential )

Y Vi
Vi(9) = oerparaa
V($) = Vo [cosh (ag /M) 7 (hyperbolic)
V(¢) = g= (Inverse power law)

V(g) = l+ﬂﬁ:f{:_a 57 (Woods-Saxon potential)

V(é) = ac? [tanh ?;%] * (a-attractor)
Vig)=Vo(l +¢~)°

Vie) =1 Exp{ﬂ-qfnzjl
V(9) = 1e*—1)?




